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Abstract 
Clustering is one of the main tasks in machine learning and data mining, and is being utilized 

in many applications including news recommendation systems. In this paper, we propose a new 

non-exclusive clustering algorithm named Ordered Clustering (OC) with the aim is to increase the 

accuracy of news recommendation for online users. The basis of OC is a new initialization tech-

nique that groups news items into clusters based on the highest similarities between news items to 

accommodate news nature in which a news item can belong to different categories. Hence, in OC, 

multiple membership in clusters is allowed. An experiment is carried out using a real dataset 

which is collected from the news websites. The experimental results demonstrated that the OC 

outperforms the k-means algorithm with respect to Precision, Recall, and F1-Score. 

Keywords: clustering algorithm, non-exclusive clustering, news recommendation, similarity 

weight 

Introduction 

Clustering is one of the main tasks in machine learning and data mining that has 

been widely applied in the field of time series prediction, recommendation, and pa-

rameter estimation [1,2]. The items with the highest similarities are grouped together 

in the same cluster and those with considerable dissimilarity are grouped into different 

clusters [3,4]. In news recommendation systems, scalability is one of the issues that 

requires delicate algorithms to effectively deal with huge amount of news articles [5]. 

To address the scalability issue, several strategies can be used such as MinHash [6] 

and clustering algorithms. The most commonly used clustering algorithms in recom-

mendation systems are hierarchical clustering [5,7] and k-means [8,9]. Nevertheless, 

these clustering algorithms do not take into consideration the news nature in cluster-

ing the news items. Consequently, a news item will only belong to a single cluster 

while in reality, a news item can be categorized in more than one news category. 

Moreover, it is obvious that users' interests are not limited to one news category. 
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Hence, the clustering algorithm to be employed in news clustering should be able to 

cluster news items without limiting their membership to a single cluster. It is also im-

portant to ensure that the clustering algorithm will not add any additional complexity. 

It is impossible to exclusive clustering approaches to cluster news items into different 

clusters. Any other way, fuzzy clustering approaches are very complicated without 

any considerable improvement [10]. 

 In this paper an efficient clustering algorithm named Ordered Clustering (OC) 

is proposed for news clustering based on the news nature in which a news item can 

belong to more than one category with the aim to achieve accurate and diverse rec-

ommendations. Our algorithm considered the highest peer-to-peer item similarities 

and grouped the items into multiple clusters.   

 The rest of this paper is organized as follows. The related works are presented 

in the following section. This is then followed by description of the proposed cluster-

ing algorithm. The experimental evaluations are then presented which is followed by 

a summary of this research work. 

Related Works 

Scalability is one of the issues in news recommendation that requires effective 

algorithms to deal with large news corpus. One of the common strategies used for 

solving scalability is clustering. In news recommendation systems, news retrieval is 

performed based on the user's access pattern in news reading and the news content is 

compared to the users' read news contents. Selecting a suitable clustering algorithm is 

essential for achieving reasonable results. Some extensively utilized clustering algo-

rithms in the news recommendation systems are reviewed as follows. 

Locality Sensitive Hashing (LSH) 

The Locality Sensitive Hashing (LSH) technique [11] is introduced to answer the 

near-neighbor search problem. Since, many applications utilizing LSH have been 

found in numerous fields [12]. The main idea of the LSH technique is to use several 

hash functions to hash the data points. Thus, for each hash function, the probability of 

collision has to be higher for the items near to each other than for those that are far 

away from each other. Then, near neighbors could be determined by hashing the que-

ry point and stored by the elements retrieved from the buckets including that point. 

LSH schemes are identified to exist for the following similarity or dissimilarity (dis-

tance) measures: Jaccard's coefficient [13,14], Hamming norm [15], Earth Mover's 

Distance (EMD), and cosine distance [16]. 

 Min-Hash (Min-wise Independent Permutations) is a LSH scheme first intro-

duced by Cohen [14]. It is a probabilistic clustering method that places a couple of 

users in a cluster with a probability proportional to the overlap between the sets of the 

news items these users have accessed. A given user iu is represented by a set of the 

news items that the 𝑢𝑖 has read based on his/her click behavior. Click history 𝑐𝑢𝑖
 rep-

resents the 𝑢𝑖 's click behavior. The similarity ratio 𝑆(𝑢𝑖, 𝑢𝑗) between the two users 

𝑢𝑖and 𝑢𝑗  is defined as the intersection between their news sets computed based on 

Jaccard's coefficient. Jaccard's coefficient is a value between 0 and 1. The distance 

function is defined as 𝐷(𝑢𝑖 , 𝑢𝑗) = 1 − 𝑆(𝑢𝑖 , 𝑢𝑗) [16]. Min-Hash uses a simple pruning 

technique. The users, who have read at least one news without reducing the number of 

candidates to a manageable number owing to the presence of popular news stories, are 

realized via the hash table. 
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Probabilistic Latent Semantic Indexing (PLSI) 

To conduct a collaborative filtering, Probabilistic Latent Semantic Indexing 

(PLSI) models were developed by Hofmann [17]. Accordingly, modeling of the news 

items (𝑛 ∈ 𝑁) and users (𝑢 ∈ 𝑈) as random variables is done by taking their values 

from the spaces of all possible news and users. The joint distribution of the news and 

users is modeled to learn the relationship between the news and users. To find this 

relationship, a hidden variable Z with the values derived from 𝑧 ∈ 𝑍 is presented 

while ‖𝑍‖ = 𝐿. 𝐿 represents the news categories and user communities. This model 

can be formally written as a mixture model proposed in Equation (1): 

( ; ) ( ) ( )p n u p z u p n z   (1

) 

 The Conditional Probability Distributions (CPDs) of p(n|z) and p(z|u) are dis-

played by parameter θ, through which the model can be completely specified. The 

model mainly introduces the latent variable Z leading to the conditional independence 

of users and items. In this generative model, state z of the latent variable Z is selected 

for u as a random user with regard to CPD p(z|u). Then, the sampling of the item s is 

followed based on z selected from CPD p(n|z). 

Hierarchical Clustering 

A hierarchical clustering algorithm [18] partitions data items into a tree of clusters. 

Hierarchical clustering methods are categorized as either divisive or agglomerative, it 

depends on whether the hierarchical decomposition is planned in a splitting (top-

down) or merging (bottom-up). Hierarchical clustering algorithm suffers from its ina-

bility to accomplish adjustment once a split or merge decision has been performed. 

Because of it, if a particular split or merge decision later turns out to have been a poor 

option, the method is not able to back down and correct it. Latest research studies 

have accentuated the integration of hierarchical agglomeration with iterative reloca-

tion methods.  

K-means 

 The k-means algorithm [18] takes k, as a input parameter, and clusters a set of 

n data items into k clusters so that the intra-cluster similarity result is high but the re-

sulting inter-cluster similarity is low. Cluster similarity is computed by consdering the 

mean value of the items in a cluster, tht is viewed as the cluster’s center or centroid of 

gravity. The k-means algorithm performs as follows. Firstly, it arbitrarily selects k of 

the data items, each of which primarily represents a cluster center or mean. To each 

remaining data item, an item is assigned to the cluster to which has higest similarity, 

based on the distance between the cluster center  and the data item. It then measures 

the new centroid for each cluster. This process repeats until the criterion function 

converges. Commonly, the square-error criterion is utilized, defined as follows. 

𝐸 = ∑ ∑ |𝑝 − 𝑚𝑖|
2

𝑝∈𝐶𝑖

𝑘
𝑖=2              (2) 

 where E is the summation of the square error for all data items in the dataset; 

𝑚𝑖 is the mean of cluster 𝐶𝑖; and p is the point in space which represents a given data 

item (both 𝑚𝑖 and p are multidimensional). Namely, for each data item in any cluster, 

the distance from the data item to its cluster mean is squared, and the distances are 

summed. This measure attempts to generate the resulting k clusters as separate and as 

compact as possible. 
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Application of Clustering Algorithm in News Recommendation System 

PENERATE [7] used a group-based hierarchical clustering method. This approach 

firstly separates user items into different sets based on their historical behaviors and 

each user item might be allocated to a number of sets. In SCENE [5], LSH [15] and 

hierarchical clustering are integrated to address the scalability issue of news recom-

mendation. Initially, the recently published news items are partitioned into small sets 

based on the news content using the LSH while a 2-layer hierarchical clustering is 

employed in the next step. The leaf nodes indicate the sets accompanied by their topic 

distributions and the inner nodes hold a pair of news sets representing more common 

news topics. Google News is a Collaborative Filtering (CF) based on the personalized 

news recommendation system [19]. News recommendation is generated by using 3 

approaches, namely: Min-Hash clustering, PLSI, and co-visitation counts of the news 

items. CCNS is a vertical news recommendation system that focuses on helping users 

to find their preferred news in a specific field and utilizes adjusted k-means for clus-

tering users [8]. Table 1 presents a brief comparison among the aforementioned clus-

tering approaches. 

Table 1. Comparison of  Approaches Based on Common Methods (CF, Content-Based 

(CB) and Hybrid). 

Approach Name 
Methods 

Clustering Method 
CF CB Hybrid 

1 
PENETRATE - - √ Group-based hierarchical clustering 

2 
SCENE - - √ LSH and hierarchical clustering 

3 
Google News √ - - Min-Hash clustering 

4 
CCNS - - 

√ 
Adjusted k-means clustering 

The Proposed Algorithm 

In this paper, a new non-exclusive clustering  algorithm is designed that is 

called Ordered Clustering (OC). To examine OC a three phases approach is designed 

as shown in Figure 1. These phases are historical data conversion into a User Click 

Behavior (UCB) Matrix, Similarity Matrix (SM) constructoin, and user clustering. 

 

 

 

 

 

Figure 1. The Phases of the Proposed Approach. 

 

Formation of User Click Behavior Matrix 

This phase intends to convert the user click behavior (UCB) into a binary matrix. Us-

ers' historical behaviors are stored in a structured database which determines user 𝑢𝑖 

clicked on news item 𝑛𝑗  at read-time time. This data can be shown as a triple <

Construct 
Similarity 

Matrix 

Convert Historical 
Data to UCB Matrix 

Cluster 
Users 
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𝑢𝑖 , 𝑛𝑗 , 𝑟𝑒𝑎𝑑 − 𝑡𝑖𝑚𝑒 >, where 𝑢𝑖 denotes the ith user, 𝑛𝑗  represents the jth news item, 

and read-time stands for the time that the user accessed the news item. The entry of 

UCB is 1 if user 𝑢𝑖 has accessed the news item nj and 0 otherwise. Table 2 presents 

an instance of a UCB binary matrix. 

Construct Similarity Matrix 

The main goal of this phase is to calculate the similarities between users based on 

their historical reading behaviors. By calculating peer-to-peer similarities between the 

users, a Similarity Matrix (SM) is constructed. Binary Jaccard's similarity measure is 

used to calculate the similarities between the users [19]. Each user's reading behavior 

can be determined as a bit string. For example, based on Table 2, the bit string of the 

reading behavior of user 𝑢1 (the first row of UCB matrix) is 

(10010110101001110011), where "1" and "0" denote read and unread, respectively. 

Table 2. User Click Behavior Matrix on News Reading. 

U
se

r 

N
ew

s 

𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 𝑛6 𝑛7 𝑛8 𝑛9 𝑛10 𝑛11 𝑛12 𝑛13 𝑛14 𝑛15 𝑛16 𝑛17 𝑛18 𝑛19 𝑛20 

𝑢1 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1 1 0 0 1 1 

𝑢2 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 

𝑢3 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 

𝑢4 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 0 1 1 1 1 

𝑢5 0 1 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 

𝑢6 0 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 1 

𝑢7 1 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 0 0 

𝑢8 1 1 1 1 1 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 

𝑢9 0 1 1 0 1 1 0 0 1 1 1 0 1 0 0 0 0 1 0 1 

𝑢10 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 1 0 0 

𝑢11 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 1 1 0 1 1 

𝑢12 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 

𝑢13 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0 1 1 

𝑢14 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 1 0 0 1 1 

𝑢15 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 0 0 

𝑢16 0 0 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 1 

𝑢17 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 0 1 

𝑢18 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 

𝑢19 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 

𝑢20 1 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 

 

Ordered Clustering Algorithm 

The purpose of this phase is to cluster users based on the Ordered Clustering 

(OC) algorithm. OC algorithm includes new features and could not be classified into 

exclusive or fuzzy clustering classifications. It is generated based on the news nature 

and user reading behavior in news reading. Each user may be interested in a variety of 

news categories and a news article could be accessed by various users with different 

behaviors and preferences. In OC algorithm, multiple memberships are allowed with 

no membership weights or values and hence called a non-exclusive clustering. For 

instance, a user may be interested to read both sport news and economic news. The 
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sport news may be read by several users. In this way, a news item should be recom-

mended to several users, and a user may be categorized into several groups of news.  

 The objective of clustering is to group the dataset 𝐷 consisting of d items in-

to 𝑘 clusters. In OC, the number of clusters is determined during the execution of the 

clustering algorithm. A multiple binary cluster of 𝐷 can be defined as a family of sub-

sets {𝐶𝑖| 1 ≤ 𝑖 ≤ 𝑘}  ⊂ 𝑃(𝐷) (𝑃(𝐷) is the power set of 𝐷) with the below proper-

ties: 

⋃𝐶𝑖

𝑘

𝑖=1

= 𝐷, (3) 

∃ 𝐶𝑖, 𝐶𝑗 , 𝐶𝑖 ∩ 𝐶𝑗 ≠ ∅, 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑘, (4) 

∅ ⊂ 𝐶𝑖 ⊂ 𝐷, 1 ≤ 𝑖 ≤ 𝑘 . (5) 

 Equation (3) means that the union of all the subsets 𝐶𝑖 contains all the data in 

𝐷. The subsets can be added, as expressed by Equation (4), and none of the subsets is 

empty or contains all the data in 𝐷 as presented in Equation (5). In terms of member-

ship functions, a cluster can be expediently represented by the cluster matrix 𝐶𝑀 =
[𝜇𝑖𝑐]𝑘×𝑑. The ith row of the 𝐶𝑀 matrix includes values of the membership function 𝜇𝑖 

of the ith subset 𝐶𝑖 of  𝐷. It follows from equations 3, 4, and 5 that the elements of 

𝐶𝑀 must satisfy the below conditions: 

 

𝜇𝑖𝑐 ∈ {0, 1}, 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑐 ≤ 𝑑  (6) 

𝜇1𝑐 𝑂𝑅 𝜇2𝑐 𝑂𝑅 …𝑂𝑅 𝜇𝑘𝑐 = 1, 1 ≤ 𝑐 ≤ 𝑑 (7) 

0 < ∑𝜇𝑖𝑘

𝑘

𝑖=1

< 𝑑, 1 ≤ 𝑖 ≤ 𝑘 (8) 

 Ordered Clustering algorithm selects a pair of users with the highest similarity 

ratio in the Similarity Matrix and groups these users into the same cluster. This pro-

cess is repeated with the next highest similarity ratio. This means that the users in a 

cluster is ordered in descending order based on the similarity ratios between the users. 

Consequently, given a user 𝑢𝑗  of cluster 𝐶𝑖, the left-hand side neighbors of 𝑢𝑗  is said 

to be more similar than the right-hand side neighbors of 𝑢𝑗 . For example, refer to Fig-

ure 2 which shows a cluster 𝐶𝑖 with 𝑙 members. To the given user 𝑢𝑗  the left-hand side 

neighbors 𝑢𝑥, 𝑢𝑦, ..., 𝑢𝑗−1 are more similar compared to the 𝑢𝑗 's right-hand side 

neighbors 𝑢𝑗+1, ..., 𝑢𝑙 as the similarity ratio values on the left-hand side of 𝑢𝑗  are 

greater than those on the right-hand side. 

 

𝑢𝑥 𝑢𝑦 𝑢𝑧 ... 𝑢𝑗−1 𝑢𝑗  𝑢𝑗+1 ... 𝑢𝑙 

Figure 2. An Array List of Cluster 𝑪𝒊 Consisting of Users 𝒖𝒙 to 𝒖𝒍 

The similarities between the users are shown as follows: 

𝑆𝑖𝑚(𝑢𝑥 , 𝑢𝑦) >  𝑆𝑖𝑚(𝑢𝑦, 𝑢𝑧) 𝑎𝑛𝑑 …𝑎𝑛𝑑 𝑆𝑖𝑚(𝑢𝑗−1, 𝑢𝑗)

>  𝑆𝑖𝑚(𝑢𝑗 , 𝑢𝑗+1) 𝑎𝑛𝑑 …𝑎𝑛𝑑 𝑆𝑖𝑚(𝑢𝑙−2, 𝑢𝑙−1) >  𝑆𝑖𝑚(𝑢𝑙−1, 𝑢𝑙) 
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Ordered Clustering Algorithm 

Figure 3 illustrates the Ordered Clustering algorithm. Step 4 repeats and ensures 

that eventually all users of U are considered and belong to at least a cluster. In Step 6, 

the highest similarity ratio in SM is identified. This value indicated by 𝑆𝑀𝑖𝑗 is as-

signed to a variable called Max (Step 7). In Step 8, the entry 𝑆𝑀𝑖𝑗 of 𝑆𝑀 is set to 0 to 

avoid it from being chosen again in the next iteration. In Step 9, the existing clusters 

are checked and if user 𝑢𝑖 is a member of an existing cluster say 𝑐𝑙 then user 𝑢𝑗  is 

inserted into the same cluster 𝑐𝑙 of user 𝑢𝑖 (Step 13). However, if 𝑢𝑖 is not found in 

the cluster 𝑐𝑙 but 𝑢𝑗  is found to be a member of cluster 𝑐𝑙 then 𝑢𝑖 is inserted into the 

cluster 𝑐𝑙 (Step 20). Yet, if both users 𝑢𝑖 and 𝑢𝑗  do not belong to any clusters, then a 

new cluster 𝑐𝑘 is created and both 𝑢𝑖 and 𝑢𝑗  are inserted into the cluster 𝑐𝑘 (Step 28). 

The algorithm is terminated when all users are members of at least one cluster, i.e. 

𝑈 = ∅. 

OC Algorithm 

Input: 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑛} as Set of Users, Similarity Matrix SM  

Output: 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑘} as Set of Clusters 

1. BEGIN  

2.       k = 0 

3.       Found = F 

4.       WHILE 𝑈 ≠ ∅ DO 

5.           BEGIN 

6.                Find the maximum value in SM 

7.                Max = 𝑆𝑀𝑖𝑗 

8.                𝑆𝑀𝑖𝑗 = 0 

9.                FOR each cluster 𝑐𝑙 in C AND Found ≠ T DO 

10.                  BEGIN 

11.                     IF 𝑢𝑖 is a member of the cluster 𝑐𝑙THEN 

12.                       BEGIN 

13.                           Insert 𝑢𝑗  into 𝑐𝑙 

14.                           𝑈 = 𝑈 − 𝑢𝑗  

15.                           Found = T 

16.                       END 

17.                    ELSE 

18.                         IF 𝑢𝑗  is a member of the cluster 𝑐𝑙THEN 

19.                            BEGIN 

20.                                Insert 𝑢𝑖 into 𝑐𝑙 

21.                                𝑈 = 𝑈 − 𝑢𝑖 

22.                               Found = T 

23.                            END 

24.                           ELSE 

25.                              BEGIN 

26.                                   k = k + 1 

27.                                    Create a new cluster 𝑐𝑘 

28.                                    Insert 𝑢𝑖 and 𝑢𝑗  into 𝑐𝑘 

29.                                    𝑈 = 𝑈 − 𝑢𝑖 

30.                                    𝑈 = 𝑈 − 𝑢𝑗  

31.                                   Found = T 
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32.                              END 

33.                 END 

34.               Found = F 

35.          END 

36. END 

Figure 3. The Ordered Clustering Algorithm. 

 

 By running the algorithm on the CM given in Figure 4, the clusters created are 

as shown in Table 4. 

CM = 

[
 
 
 
 
 
00110000000010100100
00010011000000101100
10001100001101010001
00000000010001010000
01000000100000000000
10000100000100000011]

 
 
 
 
 

 

Figure 4. Cluster Matrix. 

 

Table 4. The Clustering Results Based On Oc. 

Cluster No Members 

𝑐1 {𝑢3, 𝑢13, 𝑢4, 𝑢15, 𝑢18} 
𝑐2 {𝑢7, 𝑢8, 𝑢15, 𝑢18, 𝑢17, 𝑢4} 
𝑐3 {𝑢5, 𝑢6, 𝑢11, 𝑢14, 𝑢16, 𝑢1, 𝑢12, 𝑢20} 
𝑐4 {𝑢10, 𝑢16, 𝑢14} 
𝑐5 {𝑢2, 𝑢9} 
𝑐6 {𝑢1, 𝑢19, 𝑢6, 𝑢12, 𝑢20} 

 

Experiment Environment 

In this section, an experimental evaluation is provided to show how the pro-

posed clustering algorithm differed from k-means for news recommendation system. 

First, the real dataset used in the experiments are introduced. Then, the results of the 

k-means method and the proposed OC algorithm are presented. 

News Dataset 

The dataset was gathered from Twitter information streams that was crawled over a 

period of more than 60 days, from October 2010 to January 2011. In this dataset, the 

streamed news articles were accessed by more than 20,000 users with the more than 

10 million times. To relate the tweets with the news articles, more than 60 well-

known news agencies, such as New York Times, CNN, and BBC were monitored. The 

tweets create a total of 77,544 news articles [20]. 

 We are interested in analyzing the clustering algorithms and their accuracy in 

prediction. Thus, we generated a sample of 1,009 users, who read at least 4 news 

items per day. This sample dataset contained 1,161,798 news-reading records. From 

our sample, 38,737 news items were derived. Table 5 presents the characteristics and 

the descriptive statistics of the dataset. 
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Table 5. Characteristics of The Dataset. 
No. of News Items 38,737 

No. of Users 1,009 

No. of News Readings 1,161,798 

Daily News Average 355 

 

Evaluation of Clustering Effectiveness 

The effectiveness of the proposed clustering algorithm, OC, is compared to the result 

of the k-means algorithm. The detailed experiments are illustrated as follows. 

 Both clustering algorithms were implemented using Java on a Pentium V PC 

with MS-Windows 8.0 and 4 GB of RAM. Each experiment was run 10 times. The 

recall, precision, and F1-scores have been measured for OC and k-means algorithms. 

Each user is assumed as an entry in the clustering.  

 Figure 5 depicts the results of the evaluation. It can be concluded from Figure 

5 that the proposed OC algorithm significantly outperforms k-means in terms of accu-

racy with 20.6% improvement in Recall, 51.5% improvement in Precision, and 46% 

improvement in F1-score. 

 
Figure 5. Accuracy Metrics in Different Clustering Algorithms. 

 To corroborate the effectiveness of our proposed clustering algorithm, a de-

tailed comparison was also provided between our method and the general recommen-

dation method that utilized k-means based on pairwise similarities. For each approach, 

we arbitrarily selected 100 users to provide recommendation for them. We then plot-

ted the precision and recall of the news items recommended to each user. Figure 6 

presents the results of recall and precision of this experiment. In Figure 6, the row 

denotes recall of the algorithms, "♦" shows the precision values for k-means, and "▲" 

demonstrates the Ordered Clustering precision. 
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Figure 6. Recall-precision plot for different user clustering algorithms; remarks: "▲" 

represents news recommendation results using ordered clustering and "♦" denotes news 

recommendation results obtained from k-means clustering.  

 It can be concluded from Figure 6 that besides obtaining a higher recall and 

precision in the OC algorithm, the performance distribution of OC algorithm is more 

dense than that of the k-means algorithm. This assures the efficiency of OC algorithm 

for the news recommendation system. In the accomplished experiments of this study, 

all the users were equally treated as the experimental subjects. Actually, users with 

different news reading behaviors, such as various daily reading frequencies, might 

have different patterns of news topic preferences and then, the dynamic interests in 

the news items could vary very much. 

Conclusion Remark and Future Research Direction 

In this paper, we proposed a new non-exclusive clustering algorithm named Ordered 

Clustering (OC) that is dedicated to news recommendation. In this algorithm the 

highest peer-to-peer item similarities is considered and these items are grouped into 

multiple clusters. OC is a qualified and specified clustering algorithm in news rec-

ommendation based on the news nature. The results indicated that multiple member-

ships in the clusters contribute to the accuracy enhancement. 

 The experimental results and the higher F1-score demonstrated that OC is 

more efficient for clustering news items and generating accurate recommendations 

than the k-means. Our evaluation is done in an offline manner with real data. Never-

theless, a better evaluation can be performed in an online recommendation system. 

For future work, to achieve more precise results, assessment should be done in a real 

online environment.  
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