Algorithm: as Construction of Cayley Graph which Embedded any Graph

Nihad Abdel-Jalil
University of wraith - AL_Anbiya'a, College of Engineering, Dep Air conditioning and Rcf. Nihad.abduljalil@uowa.edu.iq

Abstract

C.Delorme gave a proposition of construction of vertex-transitive graph. For this there is a group G and a subgroup H , and a subset A of G . the graph $[\mathrm{G}, \mathrm{H}, \mathrm{A}]$ are constructed. The vertices of graph are the parts of G of the forms xH , their number is the index of H in G .

The adjacent of xH are xah where a $\epsilon \mathrm{A}$ when H is reduced to an neuter element of the group. Cayley graph is found and it is associated to group G and the part A.

If gCG , then $\mathrm{xH} \rightarrow \mathrm{gxH}$ is an automorphism Nihad M. [3] found that there exist an Extension which in ($\mathrm{n}-1$) monomorphic, which contains any binary relation , then Cayley graph is vertex transitive so (n 1) - monomorphic. In this work it is found that an Algorithm as construction Cayley graph which embedded any binary relation, and this Extension perhaps is finite or infinite.

Keywords: Vertex-transitive, Cayley graph, automorphisme, (n-1) -monomorphic.

1. Introduction

Let G be a finite group, and S the set of generators of G. Cayley graph is denoted by Cay (G,S) with the vertices correspond to the set of elements of G, defined by:
Let $(\mathrm{V} 1, \mathrm{~V} 2)$ is an are of Cay (G, S) if and only if $\mathrm{HS}_{\mathrm{i}} \in \mathrm{S}$ such that $x_{2}=x_{1} \cdot s_{1}$ or $x_{1}^{-1} . x_{2} \in \mathrm{~S}$.

Cayley graph in ($\mathrm{n}-1$) monomorphic, when for all x, y of it is base E , the restrictions of cay (G,S) to E-x and E-y are isomorphic in [3], any binary relation reflexive or antireflexive is embedded in cay (G,S)

2. Definitions

*A Binary relation R on V in a Function: $V^{2}[+,-] \longrightarrow$
*The relation R of base V , the elements of V are called vertices of R
The pair (V, E) are called a graph,E represents the set of $\operatorname{arcs}(x, y)$ such that $\mathrm{R}(\mathrm{x}, \mathrm{y})=+$
*G and it are two graphs, such that $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, and $\mathrm{H}=\left(\mathrm{V}^{\prime}, \mathrm{E}\right), \mathrm{V}$, and V^{\prime} are the same cardinal, and F in a objective from V to V^{\prime}.
provided that f in an isomorphism from G on H if :
$\forall(x, y) \in V:(x, y) \in E \quad[f(x), f(y)] \in E^{\prime}$
*let R, S, be two relations of the same arity. R in embedded in S if and only if there exists a restriction of S isomorphic with R.

[^0]
Notation:

$(\mathrm{X})=\{\mathrm{X}+\mathrm{S}: \mathrm{X} \in \mathrm{S}\}$ set of successors λ^{+}
$(X)=\{X-S: X € S\}$ set of predecessors λ^{-}
Theorem1 N. Majed [3]: let x be a graph of cardinal n . then there exists
a part S of Z_{3}^{n-1} such that x is embedded in cay $\left(Z_{3}^{n-1}, S\right)$

Proof:

(1)let $\mathrm{X}=(\mathrm{V}, \mathrm{E})$ be a graph we shall be constructed by recurrence as a part S of Z_{3}^{n-1} and an injection $\mathrm{f}: \mathrm{V} \longrightarrow Z_{3}^{n-1}$ such that for all $\mathrm{x}, \mathrm{y} \in \mathrm{V}$ (X,Y) ЄE iff $f(Y)-f(X) \in S$.
A) case1: $\mathrm{n}=2$, there exist three graphs not isomorphic at two elements defined as follows .

1) For the graph without arcs, put $S=\phi$, then cay $\left(Z_{3}, S\right)$ is the empty graph .
2) For the graph with one arc, put $S=\{1\}$, then cay $\left(Z_{3}, S\right)$ is a cycle of three elements.
3)For the complete graph, put $S=\{1,2\}$ and cay $\left(Z_{3}, S\right)$ is a symmetric complete graph .
(2) Suppose the theorem is true for n , let $\mathrm{X}=(\mathrm{V}, \mathrm{E})$ be a graph of cardinal $\mathrm{n}+1$, let $\mathrm{a} \epsilon \mathrm{V}, \mathrm{V}^{\prime}=\mathrm{V}-\{\mathrm{a}\}$ and X^{\prime} is the restriction of X to V^{\prime}, the set E^{\prime} of arcs of X^{\prime} is arcs set of E which in not in the from (a, x) or $(x, a) x$ is any element of V by the hypothesis of recurrence there exist a part T of Z_{3}^{n-1} and an injective f from V^{\prime} into Z_{3}^{n-1} such that for all $x, y \in V^{\prime}(X, Y) \in E^{\prime} \operatorname{Iff} f(y)-f(x) \in T$

Let:
S1=T* $\{0\}$
$\mathrm{S} 2=\left\{(\mathrm{f}(\mathrm{x}), 1) ; \mathrm{X} \in \lambda^{+}(\mathrm{a})\right\}$
$\mathrm{S} 3=\left\{(-\mathrm{f}(\mathrm{x}),-1) ; \mathrm{X} \in \lambda^{-}\right.$(a) $\}$
S = S1U S2 U S3
Let g be an application from V into Z_{3}^{n}. define by $g(a)=(0,0, \ldots, 0)$ and $g(x)=(f(x)$, 1) Shall be proved that for all $X, Y \in V$
$(X, Y) \in E$ iff $g(y)-g(x) \in S$
A) case1 $(\mathrm{X}, \mathrm{Y}) \in \mathrm{V}^{\prime}=\mathrm{V}-\{\mathrm{a}\},(\mathrm{X}, \mathrm{Y}) \in \mathrm{E}^{\prime}$ equivalent to $\mathrm{f}(\mathrm{y})-\mathrm{f}(\mathrm{x}) € \mathrm{~T}$ equivalent $g(y)-g(x) \in S 1$, by def, to S1 .
B) case $2, \mathrm{X}=\mathrm{a}$ and $\mathrm{Y} \in \mathrm{V}^{\prime}=\mathrm{V}-\{\mathrm{a}\}$.
$\left.(\mathrm{a}, \mathrm{y}) \in \mathrm{E}, \mathrm{Y} \in \lambda^{+}(\mathrm{a}) \leftrightarrow \mathrm{f}(\mathrm{y}), 1\right) \in \mathrm{S} 2$
But $(f(y), 1)=g(y)=g(y)-g(a)$.
C) case $3, X \in V^{\prime}$ and $y=a,(x, a) \in E \leftrightarrow X \in \lambda^{-}(a) \longleftrightarrow(-f(x),-1) \in S 3$

But $(-f(x),-1)=-g(x)=g(a)-g(x)$. in the three cases, if $(x, y) \in E$ then $g(y)-g(x) \in S$.
The inverse, if the elements (respectively) belong to $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3$ then the last coordinate is (respectively) equal $0,1,2$
Remark 1 :it can put in the proof $Z_{m}(\mathrm{~m} \geq 3)$ instead of Z 3 .
Remark 2 : if X in symmetric graph, it can put Z 2 instead of Z 3 , and in this case S3=S2 .

Theorem 2 [3] : Each binary relation possesses a finite extension (n-1)-monomorphic

For, if n is the cardinal of relation there exist for each integer m of the form $K^{n-1}(\mathrm{~K} \geq 3)$, this extension is ($\left.\mathrm{m}-1\right)$ - monomorphicand there exist an infinite extension ($\mathrm{n}-1$) - monomorphic . of the relation .
Let A be a finite binary relation, and $\overline{\mathrm{A}}$ one of these finite extensions ($\mathrm{n}-1$) - monomorphic, by the above theorem .
Let B by the relation by making the Z -sum of $\overline{\mathrm{A}}$ (I.e. we replace each point of Z by copy of \bar{A}), it is clear that B is infinite of A, and then ($n-1$)-monomorphic .

3. Algorithm

The following graph X is considered any two element S of X are chosen, for example.

γ and β.
In this case $S=\phi$.
And $\mathrm{X} 1=\operatorname{cay}\left(Z_{3}, \phi\right)$
f1 $(\mathrm{y})=0$
$\mathrm{fl}(\beta)=1$
$=\phi \mathrm{X}\{0\}=\phi \cdot S_{1}^{\prime}$
$=f_{1}\left(\lambda^{+}(\mu)\right) \times\{1\}$. then S_{2}^{\prime}
$=f_{1}(\{\mathrm{\gamma}, \beta\}) \times\{1\} S_{2}^{\prime}$
$=\{0,1\} \times\{1\}$
$=\{(0,1),(1,1)\}$.
$=-\left[\mathrm{f}\left(\lambda^{-}(\mu) \times\{1\}\right] S_{3}^{\prime}\right.$
$=-[\phi]$
$=\phi$
$\mathrm{S}^{\prime}=S_{1}^{\prime} U S_{2}^{\prime} U S_{3}^{\prime}$
$\mathrm{S}^{\prime}=\{(0,1),(1,1)\}$.
$(\mu)=(0,0) f_{2}$
$(\mathrm{\gamma})=\left(f_{1}(\mathrm{\gamma}), 1\right)=(0,1) f_{2}$
$(\beta)=\left(f_{1}(\beta), 1\right)=(1,1) f_{2}$
$=S^{\prime} \times\{0\} . S_{1}^{\prime \prime}$
$=\{(0,1),(1,1)\} \times\{0\} . S_{1}^{\prime \prime}$
$=\{(0,1,0),(1,1,0)\}$.
$=f_{2}\left(\lambda^{+}(\varsigma) \times\{1\} S_{2}^{\prime \prime}\right.$
$=\left\{f_{2}(\beta) \times\{1\}\right.$.
$=\{(1,1,1)\}$.
$=-\left[f_{2}\left(\lambda^{-}(\varsigma)\right) \times\{1\}\right] . S_{3}^{\prime \prime}$
$=-\left[f_{2}(\mu, \beta) \times\{1\}\right]$.
$=-[(0,0,1),(1,1,1)]$.
$=\{(0,0,-1),(-1,-1,-1)\}$.
$=S_{1}^{\prime \prime} S_{2}^{\prime \prime} S_{3}^{\prime \prime} S^{\prime \prime}$
$=\{(0,1,0),(1,1,0),(1,1,1),(0,0,-1),(-1,-1,-1)\}$.
$(\gamma)=\left(f_{2}(\gamma), 1\right)=(0,1,1) f_{3}$
$(\beta)=\left(f_{2}(\beta), 1\right)=(1,1,1) f_{3}$
$(\mu)=\left(f_{2}(\mu), 1\right)=(0,0,1) f_{3}$
$(\varsigma)=(0,0,0) f_{3}$
It is found that the graph cay $\left\{Z_{3}^{3},[(0,1,0),(1,1,0),(1,1,1),(0,0,-1),(-1,-1,-1)]\right\}$ Which contains the following subgraph which is isomorphic to X

Conflict of Interests.

There are non-conflicts of interest .

4. References

[1] M. Aligner , combinatorial theory, springer, Edition, 2004
[2] R .Fraise, Theory of Relations, studies in logic and the foundation of athematics north Holland , Amsterdam, New - York, oxford 118, 1986
[3] N. Majed [3] Extension (-1) - monomorphic d'une relation binaries .C.R.Acad Sci .Parist. 308 ,serie I , P . 329-332, 1989
[4] S. pemmaraju and S.SKiena . computational Discrete Mathematics - combinatorics and Graph theory with Mathematical Hardcoover (2013) Cambridge university U.K.
[5] J.H. Schemer, W.T Trotter and G.LOPES, ascetically Indicomposable partially ordered set, Graphs Tournaments and other Binary Relational structures, Discrete Math 113 (1993) . 191-205.

الخلاصة

حيث عدد العناصر . هذا البحث وجدت خوارزمية لبناء اشكال كيلي التي تكون (n-1) مونو مورفي وتحوي اشكال مهما كانت اصغر منها من

[^0]: © Journal of University of Babylon for Pure and Applied Sciences (JUBPAS) by University of Babylon is licensed under a Creative Commons Attribution 4. 0 International License, 2019.

