The Periodicity of Two Disconnecting Arc Spaces

Iftichar Al shraaAliaa HusseinBabylon University – College of pure science –Mathematic Department.
ifticharalshraa@gmail.comahh.math87@gmail.com

Abstract

Let *S* be two disconnecting arc and $f: S \to S$ be a continuous map. Suppose *f* has a fixed point and a periodic point of period n for some odd integer n > 1. Then for every integer m > n, *f* has a periodic point of period *m*. If *f* have periodic points of period *r* and *s* where $r \neq s$ are odd integer numbers, then the set of periodic points are infinite. Finally, if the set of periodic points is finite, then there are two integers *r* and *s* with $r \geq 1$ and $s \geq 0$ such that the set of period is $\{2^i, r | i \geq 0\}$.

Keywords: Periodic point, Periodic orbit, Two disconnecting arc.

الخلاصة

لتكن S قوس المفصول بائتين و f: S o S دالة مستمرة . ولتكن f لها نقطة ثابتة و نقطة دورية دوارها n لبعض الاعداد الصحيحة الفردية 1 r مانه لكل الاعداد الصحيحة n > n تمتلك نقطة دورية لها دوارها m . اذا كانت f لها نقاط دورية دوارها n . اذا كانت f لها نقاط دورية دوارها r مانه لكل الاعداد الصحيحة n > n > 7 منتلك نقطة دورية لها دوارها m . اذا كانت f لها نقاط دورية دورية دوارها r = r . اذا كانت f بها نقاط الورية دوارها ما لبعض الاعداد دورية دورية الفردية 1 r = r . الما يقاط العربية دورية دورية الفردية . r > 1 مانه لكل الاعداد الصحيحة المحموعة النقاط الدورية دورية دورية ال مانه الما معرومة النقاط الدورية دورية دورية الما معرول الفراية . r = r ما يورية النقاط الدورية دورية دورية الما يورية . r = r = r ما يورية الما معرومة النقاط الدورية دورية دورية الما يورية . r = r ما يورية الما معرومة النقاط الدورية دورية دورية الما يورية . r = r ما يورية الما معرومة النقاط الدورية دورية دورية الما يورية . r = r ما يورية الما يورية الما الدورية دورية دورية الما يورية . r = r ما يورية ما يورية الما يورية . r = r ما يورية الما يورية . r = r ما يورية دورية دورية الما يورية . r = r ما يورية ما يورية . r = r ما يورية ما يورية . r = r ما يورية .

الكلمات المفتاحية : النقطة الدورية , المسار الدوري , قوس المفصول باثنين.

1.Introduction

In the recent years, many papers (and even some books) studied the periodic points on one dimensional spaces, for examples Real interval and circle etc.).

(Sarkovskii ,1964) proved that if $f: \mathbb{R} \to \mathbb{R}$ continuous map and f has periodic point of period m then f has a periodic points of n when $m \triangleright n$ (in Sharkovskii's ordering). (Bolck 1980,1981) improved the theorem sarkovski to maps of the circle. (Bolck, 1980) proves that if has a fixed point and f has periodic point of period n, then for every integer m > n, f has a periodic point of period m.(Alseda *et al.*,1990) introduced new space which called it disconnecting interval.

In our work, we define a new space *S*, we call it two disconnecting arc. The set of periodic points studied on the new space.

2.Preliminary

In this section , we introduce the definitions and notations which we use in this work. Frist , we define a new space .

Let X be a topological space. We say that X has two disconnecting arc if $\exists J \subset X$ such that J is an open subset of X homeomorphic with an open interval of R and for every connected component of X which contains J then for all $x \neq y \in J$ the set $Y - \{x, y\}$ has at least two connected components.

Definition 2.1

Let $a, b \in S$ with $a \neq b$. We write [a, b], (a, b), (a, b], or [a, b) to denote the closed, open, or half-open arc from a counterclockwise to b.

Definition 2.2

Let *L* and *K* be proper closed arcs on *S* and let $f: S \to S$ be a continuous map. We say *L* f-covers *K* if for some closed arc $J \subset L$, f(J) = K.

Definition 2.3

The orbit of p is the set of points $p, f(p), f^2(p), ...$, and is denoted by $orb(p) = \{f^n(p) | n \in N_*\}$ where $N_* = N \cup \{0\}$. If p is a periodic point of period n, then we say that orbit of p is a periodic orbit of period n. We denoted the set of periodic points by p(f).

Now we define the fixed point and periodic point on *S*.

Definition 2.4

We say that $p \in S$ is a fixed point of f if $f(p) = p + \beta \omega$, where ω is the length of S and $\beta \in Z$. And p is a periodic point if $f^n(p) = p + \beta \omega$.

Definition 2.5

Let $a, b \in S$, we say that $a \propto b$ if a follows counterclockwise to b.

Definition 2.6:

We say that $f: S \to S$ is monotone if f has one of these properties : increasing or decreasing.

1)We say that $f: S \to S$ is increasing map if $\forall a_1, a_2 \in S$ such that $a_1 \propto a_2$, then $f(a_1) \propto f(a_2)$.

2) We say that $f: S \to S$ is decreasing map if $\forall a_1, a_2 \in S$ such that $a_1 \propto a_2$, then $f(a_2) \propto f(a_1)$.

Definition 2.7:

Let $f: S \to S$ and let $P = \{p_1, ..., p_n\}$ be a periodic orbit of f of period n. We say P is labeled in order if for $k = 1, ..., n - 1, P \cap (p_k, p_{k+1}) = \emptyset$ and $P \cap (p_n, p_1) = \emptyset$. In this case we define the arcs determined by P to be the n closed arcs $A_1 = [p_1, p_2], A_2 = [p_2, p_3], ..., A_{n-1} = [p_{n-1}, p_n], A_n = [p_n, p_1].$

3.Main Result:

In this section , we prove some propositions and a theorem which study the periodic points on the two disconnecting arc space.

Proposition 3.1 :

Let $f: S \to S$ be a continuous map and let L be proper closed arc on S with endpoints e_1 and e_2 . Suppose that $f(e_1) = e_3$ and $f(e_2) = e_4$ and $e_3 \neq e_4$. Then if f is increasing then L f -covers $[e_3, e_4]$ and if f is decreasing then L f -covers $[e_4, e_3]$.

Proof: Let $C = \{x \in D | f(x) = e_3\}$. Since $e_1 \in C$. Then $C \neq \emptyset$. Let a be a closed element in C such that $[a, e_2] \cap C = \{a\}$. Let $D = \{x \in [a, e_2] | f(x) = e_4\}$. Since $e_2 \in B$. Then $B \neq \emptyset$. Let b be closed element in D such that $[a, b] \cap D = \{b\}$. We have $f(a) = e_3, f(b) = e_4$ and if $x \in (a, b)$, then $f(x) \neq e_3$ and $f(x) \neq e_4$. If J = [a, b]. Since f is increasing, then $f(J) = [e_3, e_4]$, and hence L f -covers $[e_3, e_4]$ or f is decreasing then $f(J) = [e_4, e_3]$, and hence L f -covers $[e_4, e_3]$.

Proposition 3.2

Let $f: S \to S$ be a continuous map. Let L and K be proper closed arcs on S such that L f-covers K. Suppose J is a closed arc with $J \subset K$. Then L f-covers J.

Proof. By definition 2.2, there is a closed arc $I \subset L$ with f(I) = K. Let $J = [e_3, e_4]$. There are points $e_1 \in I$ and $e_2 \in I$ such that $f(e_1) = e_3$ and $f(e_2) = e_4$ and $e_3 \neq e_4$. Let I_1 be the closed arc with endpoints e_1 and e_2 such that $I_1 \subset I$. By proposition 3.1 either $I_1 f$ -covers $[e_3, e_4]$ or $I_1 f$ -covers $[e_4, e_3]$. Since $I_1 \subset I$ and f(I) = K, I_1 cannot f-cover $[e_4, e_3]$. Hence $I_1 f$ -covers $[e_3, e_4]$.Since $I_1 \subset I \subset L, L f$ -covers $[e_3, e_4]$.

Proposition 3.3

Let $f: S \to S$ be a continuous map. Suppose *L* is a proper closed arc on *S* such that *L* f-covers *L*. Then *f* has a fixed point in *L*.

Proof: By definition 2.2, for some closed arc $J \subset L$ with f(J) = L. There are points $a \in J$ and $b \in J$ such that f(a) and f(b) are the two endpoints of L. Let K be the closed arc with endpoints a and b such that $K \subset J$. By continuity f has a fixed point in K.

Proposition 3.4

Suppose that $f: S \to S$ be a continuous map. and suppose E_1, E_2, \ldots, E_n are proper closed arcs on S such that E_k f-covers E_{k+1} for $k = 1, \ldots, n-1$, and E_n f-covers E_1 . Then there is a periodic point y of f such that $y \in E_1, f(y) \in E_2, \ldots, f^{n-1}(y) \in E_n$.

Proof: Since $E_k f - \operatorname{covers} E_{k+1}$. Then there is $L_k \in E_k$ such that $f(L_k) = E_{k+1}$ for $k = 1, \ldots, n-1$. Then if $y \in L$, then $f(y) \in E_2$ and so $f^2(y) \in E_2$, thus by induction on n, $f^{n-1}(y) \in E_n$. Since $E_n f$ -covers $E_1, f^n(y) \in E_n$. Then by proposition 3.3, $E_1 f$ -covers E_1 . Thus f^n has a fixed point on E_1 , and then f has a fixed point f^n . That is f has a periodic point of period n.

Proposition 3.5

Let $f: S \to S$ be a continuous map. Let $P = \{p_1, p_2, ..., p_n\}$ a periodic orbit of f of odd period $n \ge 3$. Suppose P is labeled in order and let $A_1, A_2, ..., A_n$ be the arcs determined by P. Suppose that for some s and k with $s \in \{1, ..., n\}$ and $k \in \{1, ..., n\}$, A_l does not f-cover A_s for all $l \in \{1, ..., n\}$ with $l \neq s$, and A_l does not f-cover A_i for all $l \in \{1, ..., n\}$ with $l \neq i$. Then s = i.

Proof: Suppose that $s \neq i$. Let $x \in A_i^{\circ}$, then $A_i^{\circ} \neq \emptyset$ and let $y \in A_s^{\circ}$, then $A_s^{\circ} \neq \emptyset$. Then $x \neq y$. Let $C = P \cap (x, y)$ and $D = P \cap (y, x)$. Then $C \neq \emptyset, D \neq \emptyset, C \cap D = \emptyset$ and $C \cup D = P$.

If $f(a) \in C$ for some $a \in C$ then by hypothesis and proposition(3.1), $f(C) = f(P \cap (x, y)) \subseteq f(p) \cap f((x, y)) = (x, y) = C$, and hence $f(C) \subset C$. Which contradiction the fact that P is a periodic orbit. This implies that $f(a) \notin C$ for all $a \in C$. Thus $f(C) \subset D$. In the same way we can prove that $f(D) \subset C$. Since f maps Ponto P we have f(C) = D and f(D) = C. Thus C and D have the same number of elements. Since by assumption $C \cap D = \emptyset$ and $C \cup D = P$ this contradicts the fact that P has an odd number of elements. From this we get s = i.

Proposition 3.6

Suppose $f: S \to S$ be a continuous map and f aperiodic orbit $P = \{p_1, p_2, ..., p_n\}$ of odd period $n \ge 3$. Suppose P is labeled in order and let $A_1, A_2, ..., A_n$ be the arcs determined by P. Suppose also that f has a fixed point x. Then f has a fixed point ywith the property that if A_i is the arc determined by P with $y \in A_i$, there is some $s \in \{1, ..., n\}$ with s = i such that A_s f-covers A_i .

Proof: Suppose that $x \in A_n$. Since the conclusion of the proposition holds with x = y. So suppose that for each $s \in \{1, ..., n\} A_s$ does not f-covers A_n . Let m be the smallest positive integer such that if $f(p_j) = p_k$, then k < j. Note that $2 \le j \le n$, so $1 \le j - 1 \le n - 1$. In particular $j - 1 \ne n$. Since A_{j-1} does not f-covers A_n , it follows from Proposition3.1 and Proposition3.2 A_{j-1} f-covers A_n for all $s \in \{1, ..., n\}$, it follows from proposition3.5 that for some $s \in \{1, ..., n\}$ with $j \ne m - 1$, A_s f-covers A_{j-1} .

Proposition 3.7

Let $f: S \to S$ be a continuous map and let P be a periodic orbit of f of period k where $k \ge 3$. Suppose that $\{E_1, \dots, E_s\}$ is a collection of closed arcs with $2 \le s \le k$ such that

1) For each $j \in \{1, ..., s\}$, there are no elements of P in E_i° ,

2) If $i \neq j$, $E_i^{\circ} \cap E_j^{\circ} = \emptyset$,

3) If $j \in \{2, ..., s\}$ the endpoints of E_i are in P,

4) if b is an endpoint of E_1 , either $b \in Por f(b) = b + \beta \omega$, where ω is the length of S and $\beta \in Z$,

5) for each $j \in \{1, \dots, s-1\}, E_j f$ -covers E_{j+1} ,

6) $E_1 f$ -covers E_1 and M_s f-covers E_1 .

Then for any positive integer n > s, f has a periodic point of period n.

Proof: Let n > s. Suppose that $n \neq k$, since P is a periodic orbit of f of period k. Then f has a periodic points of period k. Let $F_1 = E_1, F_2 = E_1, \dots, F_{n-s} = E_1, F_{n-s+1} = E_2, F_{n-s+2} = E_3, \dots, F_{n-s+s} = F_n = E_s$. By proposition (3.4) there is a periodic point y of f such that $y \in F_1, f(y) \in F_2, \dots, f^{n-1}(y) \in F_n$. Since $y \in E_1, f(y) \in E_1, \dots, f^{n-s+1}(y) \in E_2$ and since if $i \neq j$, $E_i^* \cap E_j^* = \emptyset$ and $j \in \{2, \dots, s\}$ the endpoints of E_j are in P, we get that y is not a fixed point of f.

We may assume that $y \notin P$. To prove this, we assume that $n \ge s + 2$. Then $F_1 = F_2 = F_3 = E_1$. Hence $y, f(y), f^2(y) \in E_1$. Since *P* is a periodic orbit of period $k \ge 3$ and by the hypothesis for each $j \in \{1, ..., s\}$, there are no elements of P in M_j^* , we get that $y \notin P$. Suppose that n < s + 2. Then n < k + 2. Since $n \neq k$ and $k \ge 3$, n is not multiple of k. Since $f^n(y) = y + \beta \omega$, where ω is the length of *S* and $\beta \in Z$, we get $y \notin P$. Since $f(y) \neq y + \beta \omega$, where ω is the length of *S* and $\beta \in Z$. and $y \notin P$ and $y \in E_1$. Then from (4) $f(y) \in E_1^*$. Also since $f^n(y) = y + \beta \omega \notin P$ for

any positive integer r < n, $f^r(y) \notin P$, and $f^r(y) \neq y + \beta \omega$, where ω is the length of *S* and $\beta \in \mathbb{Z}$. Therefore by $(j \in \{2, ..., s\}$ the endpoints of E_j are in *P*, if *b* is an endpoint of E_1 , either $b \in Por f(b) = b + \beta \omega$ where ω is the length of *S* and $\beta \in \mathbb{Z}$) for any positive integer r < n, $f^r(y)$ is not an endpoint of any of the arcs $E_1, ..., E_s$. It follow from this and $E_i^{\circ} \cap E_j^{\circ} = \emptyset$ for $i \neq j$, and from the fact,

 $y \in E_1, f(y) \in E_1, f^2(y) \in E_1, \dots, f^{n-s}(y) \in E_1, f^{n-s+1}(y) \in E_2, \dots, f^{n-1}(y) \in E_s$

that y is a periodic point of period n.

Theorem 3.8

Suppose $f: S \to S$ be a continuous map. Suppose f has a fixed point and a periodic point of period n for some odd integer n > 1. Then for every integer m>n, f has a periodic point of period m.

Proof: Since f has a periodic points of period n. Then f has a periodic orbit $P = \{p_1, p_2, ..., p_n\}$ of f of period n. Suppose P is labeled in order and let $A_1, A_2, ..., A_n$ be the arcs determined by P. Since f has a fixed point q. Suppose that $q \in A_n$. By proposition 3.6, we suppose that for some $s \in \{1, 2, ..., n - 1\}$, A_s f-covers A_n .

Let $f(p_1) = p_i$ and $f(p_n) = p_j$. We have two cases.

Case 1: either $[q, p_1]f$ -covers $[q, p_i]$ or $[p_n, q]f$ -covers $[p_i, q]$.

Suppose that $[q, p_1]f$ -covers $[q, p_i]$. Since $[q, p_1] \subset [q, p_1]$ and the arc $A_s \subset [q, p_s]$ with $s \in \{1, 2, ..., k - 1\}$. Therefore by proposition 3.2 $[q, p_1]f$ -covers $[q, p_1]$ and $[q, p_1]f$ -covers each arc A_s with $s \in \{1, 2, ..., i - 1\}$. We will use proposition 3.7 from now to prove the conclusion of the theorem and by induction on n.

Now suppose that for some $s \in \{1, 2, ..., i - 1\}$, $A_s f$ -covers A_n . For k = 2, $E_1 = [q, p_1]$ and $E_2 = A_s$ such that (1) $\forall s \in \{1, 2\}$, there are no element of P in E_s° ,2) $E_1 \cap E_2 = \emptyset$, 3) the endpoint of E_2 is in P, 4) Since q is an endpoints of E_1 , then $f(q) = q + \beta \omega$, 5) for each $s \in \{1\}, E_1 f$ -covers $E_2, 6)E_1 f$ -covers E_1 and $E_1 f$ covers E_2 . Therefore by proposition 3.7 $\forall m > k, f$ has a periodic point of period m. Thus we suppose that for all $s \in \{1, \dots, i-1\}$, A_s does not f-covers A_n . Since A_s f -covers A_n for some $s \in \{1, ..., n-1\}$, this implies that i - 1 < n - 1 and hence i < n. For k=3. Since i < n. Let v be the smallest integer such that $f(p_v) \notin \{p_1, p_2, \dots, p_i\}$ for some integer v with $2 \le v \le i$ and if necessary that $f(p_{\nu-1}) \in \{p_1, p_2, \dots, p_i\}$. Let $f(p_{\nu}) = p_i$. Since $A_{\nu-1}$ does not f-covers A_n , by proposition 3.1, proposition 3.2, $A_{\nu-1}$ f-covers $[f(p_{\nu-1}), p_l]$. Hence for each integer s with $i \leq s \leq l-1, A_{\nu-1}$ f-covers A_s . Note that by choice of p_{ν} and p_l , $i \le l - 1$. Suppose that for some positive integer s with $i \le s \le l - 1$, A_s f-covers A_n . Let $F_1 = [q, p_1]$, $F_2 = A_{v-1}$ and $F_3 = A_s$. Then by proposition 3.7 $\forall m > k, f$ has a periodic point of period m. In the same way the theorem hold for k = n, by using the fact that for some $s \in \{1, ..., n-1\}$, A_s f-covers A_n , eventually we get a collection of closed arcs $\{F_1, F_2, ..., F_k\}$ with $k \le n$, such that (1),(2),(3) and (4) from proposition 3.7. Then $\forall m > k, f$ has a periodic point of period m.

Case (2): $[q, p_1]$ does not f -covers $[q, p_i]$ or $[p_n, q]$ does not f - covers $[p_j, q]$. Then by proposition 3.1 $[q, p_1]$ f -covers $[p_i, q]$ and $[p_n, q]$ f -covers $[q, p_j]$.We claim that $A_n = [p_n, p_1]$ f -covers A_n . To see that , note that since $[q, p_1]$ f -covers $[p_s, q]$, there is a point $e \in (q, p_1]$ such that $f(e) = p_n$ but $f(x) \neq p_n$, $\forall x \in (q, e)$. Since f(q) = q and $f(e) = p_n$. Then by proposition 3.1 [q, e] f -covers $[q, p_n]$ or [q, e] f -covers $[p_n, q]$. Since by the assumption $[q, p_1]$ does not f -covers $[q, p_n]$ or [q, e] f -covers $[p_n, q]$. Since by the assumption $[q, p_1]$ does not f -covers $[q, p_n]$ or [q, e] f -covers $[p_n, q]$. Suppose that $e_1 \in (q, e)$, $f(e_1) \notin A_n$. Since $f(q) = q + \beta \omega$ where ω is the length of S and $\beta \in Z$, then $f(q) \in A_n$, by continuity, for some $y \in (q, e)$, either $f(y) = p_1$ or $f(y) = p_n$. Since $e_1 \in (q, e)$, it follows from the choice of e that $f(y) \neq p_n$. Hence $f(y) = p_1$. It follows from the choice of e, that f([q, e]) and $p_1 \in f([q, e])$. Then either $A_n \subset f([q, e])$ or $[q, p_n] \subset f([q, e])$.

If $[q, p_n] \subset f([q, e])$. Then by the prove of proposition 3.2 and using the fact $f([q, e]) \neq S$. We have [q, e] f -covers $[q, p_n]$. Since $[q, p_i] \subset [q, p_n]$. Thus by proposition 3.2 [q, e] f-covers $[q, p_i]$ which contradiction the assumption. Hence $A_n \subset f([q, e])$. Since $f([q, e]) \neq S$. Then by proposition 3.2 [q, e] f-covers A_n . Therefore $A_n f$ -covers A_n .

We shall prove that our claim holds if $f(y) \notin A_n$ for some $y \in (q, e)$. Hence suppose that $f([q, e]) \subset A_n$. We prove that $A_n f$ - covers A_n , if $(y) \notin A_n$ for some $y \in (q, e)$. Hence suppose that $f([q, e]) \subset A_n$.

Since $[p_n, q] f$ -covers $[q, p_j]$, there is a point $z \in [p_n, q]$ such that $f(z) = p_1$, but $f(x) \neq p_1$, $\forall x \in (z, q)$. In the same way of the proof of $A_n \subset f([q, e])$, we can proof that $[p_n, q] \subset f([q, e])$. Also we suppose that $f([z,q]) \subset A_n$ (by the same way) to see that we may assume that $f([q, e]) \subset A_n$. Thus $f([z,q]) = A_n$. Since $[z,e]) \subset A_n$. Therefore $A_n f$ -covers A_n . Since $[q,p_1] f$ -covers $[p_i,q]$, $A_n f$ -covers $[p_i,q]$. We use the prove of proposition 3.7 and induction on n. Since $[p_n,q] f$ -covers $[q,p_j]$, $A_n f$ -covers $[q,p_j]$. Then by proposition 3.2 for each integer s with $1 \leq s \leq j - 1$ or $i \leq s \leq n - 1$, $A_n f$ -covers A_s .

Suppose that for some integer s with $1 \le s \le j-1$ or $i \le s \le n-1$, $A_s f$ -covers A_n . For k = 2, let $F_1 = A_n$ and $F_2 = A_s$. Thus from (1),(2),(3) and (4) from proposition 3.7 hold. So suppose that for each integer s with $1 \le s \le j-1$ or $i \le s \le n-1$, A_s does not f -covers A_n . Since $A_s f$ -covers A_n , for some integer s with $1 \le s \le j-1$ or $i \le s \le j-1$ or $i \le s \le j-1$ or $i \le s \le n-1$, this implies that j < i.

Since either $f(\{p_1, ..., p_j\} \notin \{p_i, ..., p_n\}$ or $f(\{p_i, ..., p_n\}) \notin \{p_1, ..., p_j\}$. Then $\{p_1, ..., p_n\}$ is a periodic orbit and j < i and use the fact that n is odd in the case j = i - 1. We suppose that $f(\{p_1, ..., p_i\} \notin \{p_i, ..., p_n\}$. Let r be the smallest positive

integer such that $f(p_r) \notin \{p_i, ..., p_n\}$. Since A_{r-1} does not f-covers A_n . Then $2 \leq r \leq j$ and $A_{r-1}f$ -covers the arc $[f(p_r), f(p_{r-1})]$. Hence $A_{r-1}f$ -covers the arc $[f(p_r), p_i]$. Let $f(p_r) = p_t$. Then $t \leq i-1$ and $A_{r-1}f$ -covers each arc A_s with $t \leq s \leq i-1$.

Suppose for some integer with $q \le s \le j-1$, $A_s f$ -covers A_n . For k = 3, $F_1 = A_n, F_2 = A_{r-1}$ and $F_3 = A_s$. Thus (1),(2),(3) and (4) of proposition 3.7 hold. By the same way we can prove that for k = n, using the fact that for some $s \in \{1, ..., n-1\}, A_s f$ -covers A_n , we eventually obtain a collection of closed arcs $\{F_1, ..., F_k\}$ with $k \le n$ such that (1),(2),(3) and (4) of proposition 3.7 hold. Then $\forall m > k, f$ has a periodic point of period m.

Proposition 3.9

Let $f: S \to S$ be a continuous map. Suppose that f have periodic points of period r and s where r and s are odd $r \neq s$. Then p(f) is infinite.

Proof: Let $r, s \in Z$ such that $r \neq s$. Suppose r < s. Let $H = f^r$. Then H has a fixed point say p and for some integer m > 1, H has a periodic point of period m say q. Then $H(p) = f^r(p) = p + \beta \omega$, where ω is the length of S and $\beta \in Z$ and $H^m(q) = (f^r)^k(q) = q + \beta \omega$, where ω is the length of S and $\beta \in Z$. Then by theorem 3.8 the set of period of H is infinite, and hence p(f) is infinite.

Proposition 3.10

Suppose $f: S \to S$ be a continuous map and p(f) is finite. Then for some integers r, s with $r \ge 1$ and $s \ge 0$, $p(f) \subset \{2^i, r | i \ge 0\}$.

Proof: Let r be the smallest period of f such that $f^r(p) = p + \beta \omega$, where ω is the length of S and $\beta \in Z$. Since the set of period f is finite, it enough to prove that if f has periodic point q of period k of f such that $f^k(q) = q + \beta \omega$, where ω is the length of S and $\beta \in Z$. Then $k = 2^i \cdot r$ for some $i \ge 0$.

Let q be a periodic point of period k. Let $r = 2^m \cdot l$ where l is odd $, l \ge 1$ and $m \ge 0$, and let $k = 2^j \cdot t$ where t is odd $, t \ge 1, j \ge 0$. Then $f^r(p) = f^{2^m \cdot l}(p) = p + \beta \omega$, where ω is the length of S and $\beta \in Z$ and $f^k(q) = f^{2^j \cdot t}(q) = q + \beta \omega$. Let v be the largest element of $\{2^m, 2^j\}$ and $H = f^v$. Then by theorem 3.8 p(H) is finite and $l, t \in p(H)$ and l and t are odd. By proposition 3.9 l = t. Since r is the smallest period of f and l = t, we have $j \ge m$. Let i = j - m. Then $i \ge 0$ and $k = 2^j \cdot t = 2^{j-m+m} \cdot l = 2^{j-m} \cdot 2^m \cdot l = 2^i \cdot r$.

References

Alseda L., Kolyada S., Llibre J., Snoha L., 1999, Entropy and periodic points for

- Block, L. 1980, Periodic orbits of continuous mapping of the circle, Amer. Math. Soc., Vol. 260, No. 2, pp.553-562.
- Block, L. 1981, Periods of periodic points of maps of the circle which have a fixed point, Proc. Amer. Math. Soc. ,Vol.82, No.3 ,pp.481-486.
- Sabbaghana, M. H. Damerchiloob, 2011, A note on periodic points and transitive maps, Mathematical Sciences, Vol. 5, No. 3 ,pp. 259-266.
- Sarkovskii, A.N., 1964, Consistence of cycles of a continuous map of the line into itself, Ukrain Math. Zh., Vol. 16, pp. 61-71.

transitive maps, Trans. Amer. Math. Soc., Vol. 351, pp.1551-1573.