Properties Chaotic of Rabinovich-Fabrvikant Equations

Wafaa H. Al-Hilli

Education College of Pure Science /University AL-Qadisiyah wafaahadi23@yahoo.com

Abstract:

We give a new map named (Rabinovich-Fabrvikant equations) and find five fixed points we study only one fixed point $x_0(0,0,0)$, and all general properties of them We prove that the contracting and expanding area of this point, thought the study of the chaotic of the point by use the Wiggins defined and we proof that the lyapunov exponent of the point *xo* (0,0,0) is positive. We use matlab program to show sensitive dependence on the initial conditions and transitivity of (R-F).

Keywords: The Rabinovich-Fabrvikant equations, fixed point, Jacobin of Rabinovich-Fabrvikant equations, sensitive dependends on initial condition ,transitivity, Lyapunov exponents of the Rabinovich-Fabrvikant equations Lyapunov dimension, topological entropy of Rabinovich-Fabrvikant equations

ألخلاصة

1.Introduction

Rabinovich -Fabrikant[1979] Recently, we look more closely into the Rabinovich-Fabrikant system, after a decade of the study in [Danca & Chen,2004], discovering some new characteristics such as cycling chaos, Tollmien-Schlichting waves in hydrodynamic ows, wind waves onwater, concentration waves during chemical reactions in a medium where diusion occur, Langmuir waves in plasma, etc[Michal *et al.*, 2015]. the Rabinovich – Fabrikant equaction is three dimensions and two parameterst *and* α and the system is chaotic :-

$$\begin{pmatrix} zy - y + yx^{2} + tx \\ 3xz + x - x^{3} + ty \\ -2z\alpha - 2zxy \end{pmatrix}$$

Definition and Notations:-

Let $F: R^3 \to R^3$ such that $F\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} f(x, y, z) \\ g(x, y, z) \\ h(x, y, z) \end{pmatrix}$ be a map. We called fixed point of three dimensions if only

Three dimensions if only
Pair
$$\binom{p}{g}$$
 such that $f\binom{p}{g} = p$, $g\binom{p}{g} = g$ and $h\binom{p}{g} = h$. then fixed point is
attracting if and only if $F^n\binom{x}{y} \to \binom{p}{g}$ as $n \to \infty$ for every $\binom{x}{y}$ in the disk
centered of $\binom{p}{g}$

F is called diffeomorphism provided if *F* is one –to –one ,onto , inverse and c^{∞} . The mixed k^{th} partial derivatives exist and one continuous is called c^{∞} .

Assume that the first partials of the coordinate maps f_1 , f_2 and f_3 of F exists at v_0 . We find Jacobin of F at v_0 by the determined of DF (vo) and its denoted by $J = |\det(DF(V_0))|F$ is called area contracting at vo if $|\det(DF(V_0))| < 1$, and F is area expanding at vo if $|\det(DF(V_0))| > 1$.

Definition (2.1):- (Kolyada and Snoha, 1997):-

The $f: X \to X$ is said to be sensitive dependence on initial conditions if there exists $\in > 0$ such that for any $x_0 \in X$ and any open set $U \subset X$ containing x_0 there exist $y_0 \in U$ and $n \in Z^+$ such that $d(f^n(x_0), f^n(y_0)) > \in$ that is $\exists \in > 0, Vx, V\delta > 0, \exists y \in B \delta(x), \exists : d(f^n(x_0), f^n(y_0)) \ge \in$

Definition (2.2)(Fotion, 2005):-

Let $f: X \to X$ be a continuous map and X be a metric space. Then the map f is said to be chaotic according to Wiggins or W-chaotic if :

1- *f* is topologically transitive.

2- f is exhibits sensitive dependent on initial condition.

Definition (2.3)(Sturman, 2006):-

The map $f: \mathbb{R}^n \to \mathbb{R}^n$ will have *n* Lyapunov exponent, say $L_1(x, v)$, $L_2(x, v)$, ..., $L_n(x, v)$ for a system of *n* variable. then the Lyapunov exponent is the maximum n Lyapunov exponent that is $L_1(x, v) = max\{L_1(x, v), L_2(x, v), ..., L_n(x, v)\}$. Where $v = (v_1, v_2, ..., v_n)$.

Proposition(2.4):-

If $t \neq 1$ then the Rabinovich - Fabrikant equation has five fixed points P₀(0,0,0)

$$p_{1,2} = \left(\pm \sqrt{\frac{bR_1 + 2b}{4b - 3a}}, \pm \sqrt{b\frac{4b - 3a}{R_1 + 2}}, \frac{aR_1 + R_2}{(4b - 3a)R_1 + 8b - 6a}\right),$$

$$p_{3,4} = \left(\pm \sqrt{\frac{bR_1 - 2b}{3a - 4b}}, \pm \sqrt{b\frac{4b - 3a}{2 - R_1}}, \frac{aR_1 - R_2}{(4b - 3a)R_1 - 8b + 6a}\right),$$
and we study only one fixed points P₀(0,0,0).

Proof:-

 $zy - y + yx^{2} + tx = x \qquad \dots \dots (1)$ $3xz + x - x^{3} + ty = y \dots \dots (2)$ $-2za - 2zxy = z \qquad \dots (3)$ Since $-2za - 2zxy - z = 0 \quad , \ z(-2a - 2xy - 1) = 0 \text{ therefore } z = 0 \dots (4)$ We put (4) in (2) we get $x - x^{3} + ty - y = 0 \text{ hance } y = \frac{x - x^{3}}{t - 1} \dots \dots (5)$ We put (5) and (4) in (1) Then $-(\frac{x - x^{3}}{t - 1}) + (\frac{x - x^{3}}{t - 1})x^{2} + tx - x = 0 \quad , \frac{-x + x^{3} - x^{5} + x^{3} + t^{2}x - tx - tx + x}{t - 1} = 0 \text{ and } x(2x^{2} - x^{4} + t^{2} - 2t) = 0$ If x = 0 then y = 0 and z = 0 then $p_{0}(0, 0, 0)$ Or The other four points by [5] $x - x^{4} + t^{2} - 2t = 0$ $x - x^{4} + t^{2} - 2t = 0$ $y - x^{4} + t^{2} - 2t = 0$ $x - x^{4} + t^{2} - 2t = 0$ $x - x^{4} + t^{2} +$

 $x_{1,2} = (\pm \sqrt{\frac{bR_1 + 2b}{4b - 3a}}, \pm \sqrt{b\frac{4b - 3a}{R_1 + 2}}, \frac{aR_1 + R_2}{(4b - 3a)R_1 + 8b - 6a}$

$$x_{3,4} = (\pm \sqrt{\frac{bR_1 - 2b}{3a - 4b}}, \pm \sqrt{b\frac{4b - 3a}{2 - R_1}}, \frac{aR_1 - R_2}{(4b - 3a)R_1 - 8b + 6a}$$

Where $R_1 = \sqrt{3a^2 - 4ab + 4}$ and $R_2 4ab^2 - 7a^2b + 3a^3 + 2a$

Proposition (2.5):-

If $t \neq 1$ and $\alpha \neq 0$ the Jacobain of the Rabinovich –Fabrikant equation is $2\alpha(-1-t^2)$

Proof:-

The differential matrix of Rabinovich -Fabrikant equation of

$$DR_{\alpha,t} (vo) = \begin{vmatrix} \frac{\partial f(vo)}{\partial x} & \frac{\partial fz(vo)}{\partial y} & \frac{\partial f(vo)}{\partial z} \\ \frac{\partial f_2(vo)}{\partial x} & \frac{\partial f_2(x)}{\partial y} & \frac{\partial f(vo)}{\partial z} \\ \frac{\partial f_2(vo)}{\partial x} & \frac{\partial f^2(vo)}{\partial y} & \frac{\partial f(u)}{\partial z} \end{vmatrix}$$
 then, $DR_{\alpha,t} (Po) = \begin{vmatrix} t & -1 & 0 \\ 1 & t & 0 \\ 0 & 0 & -2\alpha \end{vmatrix}$

Therefore J=det $DR_{\alpha,t}(Po) = -2\alpha \det \begin{vmatrix} t & -1 \\ 1 & t \end{vmatrix} = -2\alpha(t^2+1) = 2\alpha(-1-t^2)$

Proposition(2.6):-

- 1. If |t| < 1 and $|\alpha| < \frac{1}{(2(-1-t^2))}$ since $t \neq 1$ then Rabinovich –Fabrikant equation is area contracting at p_0 .
- 2. If |t| > 1 and $|\alpha| > \frac{1}{(2(-1-t^2))}$ then since $t \neq 1$ Rabinovich Fabrikant equation is area expanding at P₀.

Proof :-

- 1. If $|\alpha| < \frac{1}{(2(-1-t^2))}$ such that t < 1 then the absolute value of Jacobain of Rabinovich –Fabrikant equation is least than 1 that is $R_{\alpha,t}$ is area contracting map.
- 2. If t > 1 since $|J| = \left| \det \left(DR_{\alpha,t} \left(P_0 \right) \right) \right| = |2\alpha(-1-t^2)| > 1$ By hypotheses $|\alpha| > \frac{1}{2(-1-t^2)}$ then $R_{\alpha,t}$ is area expanding

Remark (2.7):-

The $R_{\alpha,t}$ is on to and is not one to one then $R_{\alpha,t}$ is not diffemore phism.

Proposition (2.8):-

Then $R_{\alpha,t}$ is c^{∞}

Proof :- $\frac{\partial R_1}{\partial x} = 2xy + t , \quad \frac{\partial R_2}{\partial x} = 3z + 1 - 3x^2 , \quad \frac{\partial R_3}{\partial x} = -2zy$ $\frac{\partial R_1^2}{\partial X^2} = 2Y , \quad \frac{\partial R_2^2}{\partial X^2} = -6X , \quad \frac{\partial R_3^2}{\partial X^2} = 0$ $\frac{\partial R_1^3}{\partial x^3} = 0 , \quad \frac{\partial R_2^3}{\partial x^3} = -6 , \quad \frac{\partial R_3^3}{\partial x^3} = 0 \dots \dots \dots \frac{\partial R_1^n}{\partial x^n} = 0 , \quad \forall n \in \mathbb{N}$ $N \text{ and } \frac{\partial R_2^n}{\partial x^n} = 0 \quad \forall n \in \mathbb{N} \text{ and these partial derivatives are exist and continous then } R_{\alpha,t} \text{ is } c^{\infty} \blacksquare$ **Proposition (2.9):**- $\lambda_{1,2} = t \pm i$, $\lambda_3 = -2\alpha$. **Proof :**-Det $(DR_{\alpha,t} (v) - \lambda I) = det \begin{vmatrix} t - \lambda & -1 & 0 \\ 1 & t - \lambda & 0 \\ 0 & 0 & -2\alpha - \lambda \end{vmatrix} = 0$ then $(t - \lambda)^2 (-2\alpha - \lambda) + 1 = 0$ hance $(t - \lambda)^2 (-2\alpha - \lambda) = -1$ then if $(-2\alpha - \lambda) = 0$ therefore $-2\alpha = \lambda$ Or $(t - \lambda)^2 = -1$, Then $\lambda = t \pm i$ therefore $\lambda_{1,2} = t \pm i$ and $\lambda_3 = -2\alpha < 0 \quad \forall t \in R$ is the eigenvalues of $DR\alpha$, t (P_0)

Proposition (2.10):-

1. If $\alpha < 0$ and t > 0 then P_0 is repelling fixed point . 2. If t < 0 and $\alpha > 0$ then P_0 is saddle fixed point . **Proof:-**

- 1. Since $\lambda_{1,2} = t \pm i$, $\lambda_3 = -2\alpha$ and $\alpha < 0$, t > 0 then the real part of $\lambda_{1,2}$ is positive they by [1] then P₀ IS repelling fixed point.
- 2. Since $\lambda_{1,2} = t \pm i$, $\lambda_3 = -2\alpha$ and t < 0, $\alpha > 0$ the real part of $\lambda_{1,2}$ is negative so by [1] P₀ is saddle fixed point \blacksquare

Proposition(2.11):-

The set of fixed points of Rabinovich – Fabrikant is closed.

Proof:-

Let A be the set of fixed points of Rabinovich -Fabrikant then

$$A = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : R_{\alpha,t} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ and } R_{\alpha,t} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \right\}, A \sqsubset R^3 \text{ ,To show that A is closed set}$$

Let $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in A^c \text{ then } R_{\alpha,t} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \neq \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ and since } A \sqsubset R^3 \text{ we have three distinct}$

elements in R³then there exist two disjoint open set M,N \sqsubset R³ such that $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in$

M and
$$R_{\alpha,t}\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in N$$
, hence $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in M \cap (R_{\alpha,t}^{-1})_{(N)}$ since N open subset in R³ and $R_{\alpha,t}\begin{pmatrix} x \\ y \end{pmatrix}$ is continuous map we have $(R_{\alpha,t}^{-1})_{(N)}$ is open subset in R³

Let
$$M \cap (R_{\alpha,t}^{-1})_{(\mathbb{N}} = U)$$
, we chain that $U \sqsubset A^C$ to show this, let $\binom{u}{r} \in U$ then

$$\begin{pmatrix} u \\ r \\ s \end{pmatrix} \in M$$

and $\begin{pmatrix} u \\ r \\ s \end{pmatrix} \in (R_{\alpha,t}^{-1}(N))$ so $\begin{pmatrix} u \\ r \\ s \end{pmatrix} \in M, R_{\alpha,t} \begin{pmatrix} u \\ r \\ s \end{pmatrix} \in MR_{\alpha,t} \begin{pmatrix} u \\ r \\ s \end{pmatrix} \in N$ but since $M \cap N = \Phi$ then $\begin{pmatrix} u \\ r \\ s \end{pmatrix} \neq R_{\alpha,t} \begin{pmatrix} u \\ r \\ s \end{pmatrix}$

Hence $\binom{u}{r} \in A^c$, that is our claim is true, Hance for each $\binom{u}{r} \in A^c$ we could find the open set U such that $U \sqsubset A^c$ so A^c is open then A is closed

3. Properties chaotic of the Rabinovich – Fabrikant:-Proposition (3.1):-

If |t| > 1 then Rabinovich – Fabrikant is sensitive dependent on initial condition . **Proof:**-

If
$$|\alpha| > 1$$
, $|t| > 1$ then
Let $x = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$ be a point in R^3 , $R_{\alpha,t} < \begin{pmatrix} zy - y + yx^2 + tx \\ 3xz + x - x^3 + ty \\ -2z\alpha - 2zxy \end{pmatrix}$ then

Case(1):-

If $|x| \le 1$ by hypothesis and by definition

$$R_{\alpha,t}(x) < \begin{pmatrix} -2z\alpha ty - ty \\ t^2y \\ 4z\alpha^2 \end{pmatrix}, \text{ that is } R_{\alpha,t}^n(x) < \begin{pmatrix} -2z\alpha^{2n}t^{3n}y - t^{3n}y \\ t^{2n}y \\ (2n)z\alpha^{2n} \end{pmatrix}$$

Thus if $|\alpha| > 1$ and $|t| > 1$ then $n \to \infty$

let
$$x_1 = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \in R^3$$
, $x_2 = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} \ni R_{\alpha,t}(x_1) < \begin{pmatrix} -2z\alpha ty - ty \\ t^2y \\ 4z\alpha^2 \end{pmatrix}$ and $R_{\alpha,t}(x_2) < \begin{pmatrix} -2z\alpha ty - ty \\ t^2y \\ 4z\alpha^2 \end{pmatrix}$
that $dim(R_{\alpha,t}(x_1), R_{\alpha,t}(x_2)) = \sqrt{(-2z\alpha ty - ty)^2 + (t^2y)^2 + (4z\alpha^2)^2}$

$$= \sqrt{(-2z\alpha ty - ty)^n + (t^2y)^n + (4z\alpha^2)^n}$$

If $|\alpha| > 1$, $|t| > 1$ and $n \to \infty$, $d(R^n_{\alpha,t}(x), R^n_{\alpha,t}(y)) \to \infty$

Hence $R_{\alpha,t}$ has sensitive dependent on initial condition

If |x| > 1 form of the Rabinovich –Fabrikant equation . they are diverge on the iterates of this map . thus it has sensitive dependent on initial condition

We get pictures satisfy the sensitive dependence on initial conditions to the Rabinovich –Fabrikant in different parameters

by use the Matlab program .

$m_1 = -0.3, m_2 = -0.4 t_{1,2} = 0$ with initial
points
(0.01,0.02,0.03) and (0.02,0.03,0.04)

(0.01, 0.02, 0.03) and (0.02, 0.03, 0.04)

We get pictures satisfy the transitive to the Rabinovich –Fabrikant in different parameters by use the Matlab program:-

Definition (3.2):-

The Rabinovich – Fabrikant is strange attractor if Lyapunovdimension.

Definition(3.3)[Gulick,1992]:-

Let V be a subset of \mathbb{R}^2 , and suppose that F: $V \rightarrow \mathbb{R}^2$ has continuous partial derivatives. Assume also that v_0 is in V, with orbit $\{v_n\}_{n=0}^{\infty}$. For each $n=1,2,\ldots$ we define $D_n F(v_0)$ by the formula $D_n F(v_0) = [DF(v_{n-1})][DF(v_{n-2})]\ldots [DF(v_0)]$ where $DF(v_k)$ denotes the 2×2 matrix identified with the differential of F at v_k . Then

 $D_n F(v_0)$ is 2×2 matrix (depending on n). If $D_n F(v_0)$ has nonzero real eigenvalues, we denote their absolute values of the eigenvalues by $d_{n1}(v_0)$ and $d_{n2}(v_0)$. For convenience we will assume that $d_{n1}(v_0) \ge d_{n2}(v_0)$. The Lyapunov numbers $r_1(v_0)$ and $r_2(v_0)$ of V at v_0 :- $r_1(v_0) = \lim_{n\to\infty} [d_{n1}(v_0)]^{\frac{1}{n}}$, $r_2(v_0) = \lim_{n\to\infty} [d_{n2}(v_0)]^{\frac{1}{n}}$ provided that the limits exist

proposition (3.4):-

let $R_{\alpha,t} : R^3 \to R^3$ be the R-F equation the lyapunov exponents of $R_{\alpha,t}$ is positive . **proof:**-

By properties (2-9)

If t<1 and α < 1 by proposition $|\lambda_{1,2}| = |t + i|$, If t<1 since

$$x_{1,2} = \left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}, v_{1,2} \right) = \lim_{n \to \infty} \frac{1}{n} \left| DR_{\alpha,t} \begin{pmatrix} x \\ y \\ z \end{pmatrix}, v_{1,2} \right| < 0 \text{, But if } \alpha < 1 \text{ then } x_3 = \left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}, v_3 \right) = \lim_{n \to \infty} \frac{1}{n} \left| DR_{\alpha,t} \begin{pmatrix} x \\ y \\ z \end{pmatrix}, v_3 \right| > 0 \text{ so}$$

 $x_v = \max\{x_1^{\pm}(x, v_1), x_2^{\pm}(x, v_2), x_3^{\pm}(x, v_3), \}$ then $x_v > 0$ so in the same way we can prove if t>1 and $\alpha > 1$ then L(v)>0

Proposition (3.5):-

If $|\alpha| < 0$ and t<0 then $R_{\alpha,t}$ has a stranger attractor then either Dim $A_F = 1 - \frac{ln|-2\alpha|}{in |t+i|}$ or Dim $A_F = 1 - \frac{ln|t+i|}{in |-2\alpha|}$

Proof:-

Case1:- Since $|\alpha| < 0$ and t<0 then $|t + i| \le -2\alpha$ by definition (3.3) Dn₁= max eigenvalues of D_nR_{α,t}. Dn₂=min eigenvalues of D_nR_{α,t}.. Then $r_1 = \lim_{n\to\infty} (dn_1) = \lim_{n\to\infty} (-2\alpha)$ $r_2 = \lim_{n\to\infty} (dn_2) = \lim_{n\to\infty} (t + i)$ then dim A_F =1 $-\frac{\ln|-2\alpha|}{\ln|t+i|}$ **case (2):-**If $|\alpha| > 0$ and t > 0, then we can prove by the same way : dim A_F =1 $-\frac{\ln|t+i|}{\ln|t+i|}$

 $\frac{\ln|\tau+\tau|}{\ln|-2\alpha|}$

we recall the theorem (3.35) in [3]by

proposition(3.6):-

The upper estimate of topological entropy of

$$h_{top}(R_{\alpha,t}) \le \frac{\log \alpha}{2\log t + \log \alpha}$$

Proof:-

By theorem
$$(3.35)$$
 on $[3]$ we get

$$\begin{aligned} h_{top}(R_{\alpha,t}) &\leq \log \max_{x \in \mathbb{R}^n} \max L \in T_{x \in \mathbb{R}^n} \left| \det(DR_{\alpha,t}(x)|L) \right| \\ &\leq \log \max_{x \in \mathbb{R}^n} \max L \in T_{x \in \mathbb{R}^n} \left| 2\alpha(-(1+t^2)) \right| \\ &\leq \frac{2\log \alpha}{4\log t + 2\log \alpha} \leq \frac{\log \alpha}{2\log t + \log \alpha} \end{aligned}$$

We find estimate of topological entropy of Rabinovich -Fabrikant equation

We recall the theorem (3.25) on [4] by

Proposition (3.7):-

1. If $\alpha < 0$ then $|-2\alpha| > |t+i|$ therefore $h_{top}(R_{\alpha,t}) \ge \log|-2\alpha|$ 2. If $t > 0, \alpha > 0$ then $|t+i| > |-2\alpha|$ then $h_{top}(R_{\alpha,t}) \ge \log|t+i|$

proof:-

case (1) :-

by proposition (2.9) and by hypothesis then

 $h_{top}(R_{\alpha,t}) \ge \log|-2\alpha|$

By using the same way, we can prove this case

Reference :

Arrowsmith, D.K., 1982," Ordinary Differential Equations", Chapman and Hall USA. Gulick D., 1992,"Encounter with Chaos", McGraw-Hill, Inc., New York.

- Katok S. R.,1980, "The Estimation from above for the Topological Entropy of a Diffeomorphism. Global Theory of Dynamical System ",Lect. Notes Math . 819, pp. 258-264.
- Manning A., 1973, Topological Entropy and the First Homology Group. Dyn. Syst., Proc. Symp. Univ. Warwick 74, Lect Notes Math. 468,(1975)pp.185-190 .
- Michal Fe_Ckan & Nikolay Kuznetsov & Guanrong Chen, 2015," Looking more closely to the Rabinovich-Fabrikant system", Cluj-Napoca, Romania.
- Sturman R. Ottion J. M and Wigginss, 2006, "The Mathematical Foundation of Mixing", U. S. A. Cambridge University Press.