Spherical Approximation on Unit Sphere

Eman Samir Bhaya

Ekhlas Annon Musa

Department Of Mathematics/college Of Education For Pure Sciences/ University Of Babylon. emanbhaya@itnet.uobabylon.com ekhlasanoon@yahoo.com

Abstract

In this paper we introduce a Jackson type theorem for functions in L_P spaces on sphere And study on best approximation of functions in L_P spaces defined on unit sphere.

our central problem is to describe the approximation behavior of functions in L_p spaces for p < 1 by modulus of smoothness of functions.

Keywords : Modulus of smoothness , orthogonal matrices on \mathbb{R}^d , approximation of functions in L_p spaces defined on unit sphere .

الخلاصة

We need the following definitions from Ditzian,2008 Definitions 1.1

For $L_p(S^{d-1})$, we denote the space of functions on the sphere $(S^{d-1}) = \{x = (x_1, x_2, \dots, x_d) : x_1^2 + x_2^2 + \dots + x_d^2 = 1\}$. Let $f: S^d \to R$,

For functions on S^{d-1} in the function spaces $L_p(S^{d-1})$, p < 1, we define the quasinorm

$$\|f\|_{L_p(S^{d-1})} = \left(\int_{S^d} |f(x_1, x_2, \dots, x_d)|^p \, dx_1 \, dx_2 \dots \, dx_d \right)^{\frac{p}{p}}$$

Nawmodulus of smoothness $\omega_r(f,t)_{L_p}(S^{d-1})$ where is recently introduced inDitzian, 1999. $\omega_r(f,t)_{L_p}(S^{d-1})$ is given by

$$\omega_r(f,t)_{L_p(S^{d-1})} = \sup\left\{ \left\| \Delta_\rho^r f \right\|_{L_p(S^{d-1})} : \rho \in O_t \right\}, t \ge \mathbf{0}$$

Such that $\Delta_\rho f(x) = f(\rho x) - f(x), \Delta_\rho^r f(x) = \Delta_\rho \left(\Delta_\rho^{r-1} f(x) \right)$
$$\Delta_\theta^r f = (TQ - I)^r f$$

If $r = \mathbf{1} \Delta_\theta^\mathbf{1} f = (TQ - I) f$
 $TQf(x) = f(Q(x)), Q \in So(d)$
 $O_t = \{ \rho \in So(d) : \max_{x \in S^{d-1}} [\rho x. x \ge cost \}]$

And **So**(\Box) is the groupof orthogonal matrices of $d \times d$ real entries with determinant 1

Let M_{\bullet} be the $d \times d$ (even) matrix given by

$$\begin{split} & \begin{bmatrix} \cos\theta\sin\theta & \mathbf{0} \\ -\sin\theta\cos\theta & \mathbf{0} \\ \mathbf{0} & \vdots \\ \mathbf{0} & \cos\theta\sin\theta \\ -\sin\theta\cos\theta \end{bmatrix} \\ \text{Clearly} & M_{\mathbf{0}} = I, \left(M_{\theta}\right)^{j} = M_{j\theta} \text{ and } \left(M_{\theta}\right)^{-1} = M_{-\theta} \\ & S_{(\theta,p)}f(x) = \frac{1}{m_{\theta}} \left(\int_{xy = \cos\theta} |f(y)|^{p} \, d\gamma(y) \right)^{\frac{1}{p}}, \qquad S_{\theta}I = I, \end{split}$$

where $d\gamma$ is the measure on the set $\{y \in S^{d-1}: x. y = cos\theta\}$ that it causes by the Lebesgue measure on $S^{\dagger}(d-2) (\{y: x. y = cos\theta\})$ is an isometric map of dilation on $S^{\dagger}(d-2)\}$.

and
$$m_{\theta}$$
 is given by $S_{\theta}I = I$;

 $\widetilde{\Delta}$ is the Laplace - Beltrami differential operator given, using the Laplacian operator $\Delta = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_d^2}$

$$\widetilde{\Delta}f(x) = \Delta F(x)_{\text{for}} x \in S^{d-1}, \text{where} F(x) = f\left(\frac{x}{|x|}\right)$$

If $f \in L_p(S^{d-1})$ The K- functional of f defined as
 $K_{2\alpha}(f, \widetilde{\Delta}, t^{2\alpha})_{L_p(S^{d-1})} \cong \inf\left(\|f - g\|_{L_p(S^{d-1})} + t^{2\alpha}\|(-\widetilde{\Delta})^{\alpha}g\|_{L_p(S^{d-1})} : (-\widetilde{\Delta})^{\alpha}g \in L_p(S^{d-1})\right)$

$$S_{\theta}f(x) = \frac{1}{m(\theta)} \int_{\{y \in S^{d-1}: x, y = \cos\theta\}} f(y) d\gamma(y),$$

$$S_{\theta}I = I, x \in S^{d-1}$$

$$m_{\ell}(u) = \frac{-2}{\binom{2\ell}{\ell}} \sum_{j=1}^{\ell} (-1)^{j} \binom{2\ell}{\ell-j} m(ju)$$

2 A unified

2.AuxiliaryResults

In this papper we need the following lemmas.

Lemma 2.1 Ditzian,2004
For
$$f \in L_p(S^{d-1}), p < 1$$

We have $\int \left[\left[\left[f \left(Q^{-1} M_{\theta} Q_x \right]^p dQ \right] \right]^{1/2} \right] \right]^{1/2}$
Where $S_{\theta,p}(f) = \frac{1}{m\theta} \left(\int_{xy=\cos\theta} |f(y)|^p d\gamma(y) \right)^{1/p}$

Lemma 2.2
For
$$f \in L_p[(S]^{d-1}), p < 1$$
 then
 $\|f(\rho x)\|_{L_p[(S]^{d-1})} = \|f(x)\|_{L_p[(S]^{d-1})}$, for any $\rho \in So(d)$

Proof

Since , , , so that $\rho \in S$, then $\|f(\rho x)\|_{L_p(S^{d-1})} = \|f\|_{L_p(S^{d-1})}$ and $\|f(\rho x)\|_{L_p(S^{d-1})} = \|f(x)\|_{L_p(S^{d-1})}$

Lemma 2 .3Ditzian,2008

An operation by an element of so(d) is an isometry and in most situations under the condition

$$\|f(\rho x) - f(x)\|_{L_p(S^{d-1})} \to \mathbf{0}as|\rho - I| \to \mathbf{0},$$

where $|\rho - \eta|^2 = \max_{x \in S^{d-1}} \left((\rho x - \eta x) \cdot (\rho x - \eta x) \right)$. (Note that $\max(\rho x. x) \ge \cos \Box$ is
equivalent to $|\rho - I| \le 2 \left| \frac{\sin t}{2} \right|$)

Lemma 2.4 Ditzian ,2004 For an integer ℓ we have

$$\binom{2\ell}{\ell} + 2\sum_{j=1}^{\ell} (-1)^j \binom{2\ell}{\ell-j} \cos j\theta = 4^{\ell} \sin^{2\ell} \frac{\theta}{2}.$$

Lemma 2.5Ditzian,2004

$$S_{\theta}f(x) = \frac{1}{m(\theta)} \int_{\{y \in S^{d-1}: x, y = \cos\theta\}} f(y) d\gamma(y), S_{\theta}I = I,$$

$$x \in S^{d-1}$$

$$S_{j,\theta}f(x) = \frac{2}{\binom{2\ell}{\ell}} \sum_{j=1}^{r} (-1)^{j} {\binom{d}{\ell-j}} S_{j\theta}f(x)$$

For $S_{j,\theta}f$ given in
 $(S_{j,\theta}f)^{h}(x) = m_{\ell}(2\pi\ell |x|)\hat{f}(x)_{\text{and}}$
 $1 - m_{\ell}(u) = \frac{2\Gamma\left(\frac{d}{2}\right)}{\Gamma\left(\frac{d-1}{2}\right)\Gamma\left(\frac{1}{2}\right)} \frac{4^{\ell}}{\binom{2\ell}{\ell}} \int_{0}^{1} \left(\frac{\sin us}{2}\right)^{2\ell} (1 - s^{2})^{\frac{d-2}{2}} ds$

Lemma 2.6Ditzian ,2004 For $0 < u \le \pi$, $0 < C_1 u^{2l} \le 1 - m_l(u) \le C_2 u^{2l}$, For $u \ge \pi$, $0 < m_l(u) \le S_{j,\theta} < 1$. **Lemma2.7**Ditzian,2004

For $\left| \left(\frac{d}{du} \right)^{j} m_{l}(u) \right| \leq C_{\ell,j} \left(\frac{1}{1+u} \right)^{\frac{d-1}{2}}$

Lemma2.8

Proof

Following the proof of lemma 3.17 step by step in Stein,G.Weiss,1971 we can get the proof

3. The Main Results

In this paper we introduce our main results

Theorem 3.1
For
$$f \in L_p(S^{d-1}), p < 1$$
, we have
(i) $S(\theta,p)f \in L_p(S^{d-1})$
(ii) $\|S(\theta,p)f - f\|_{L_p(S^{d-1})} \leq C(p)\|f\|_{L_p(S^{d-1})}$
Proof of
(i) Using $\|f(\varphi)\|_{L_p(S^{d-1})} = \|f\|_{L_p(S^{d-1})}$
We directly get $S(\theta,p)f \in L_p(S^{d-1})$
(ii) Now we use $\|f(\varphi x)\|_{L_p(S^{d-1})} = \|f(x)\|_{L_p(S^{d-1})}$ and hence
 $\|f(Q^{-1}M_{\theta}Q_x)\|_{L_p(S^{d-1})} = \|f_{S_0(d)}[f(Q^{-1}M_{\theta}Q_x)]^{pr}dQ\|_{L_p(S^{d-1})}$
For $Q^{-1}M_{\theta}Q = \rho$
 $\left(\int_{S^{d-1}}\int_{S^{d}(d)}|f(Q^{-1}M_{\theta}Q_x)|^{pr}dQdx\right)^{\frac{1}{p}}$
 $\leq C(p)\left(\int_{S^{d-1}}|f(Q^{-1}M_{\theta}Q_x)|^{pr}dx\right)^{1/p}$
 $\leq C(p)\|f^{-1}\|_{L_p(S^{d-1})}$
(iii) The inequality $\|S_{\theta}f - f\|_{L_p(S^{d-1})} \leq c(p)\omega_r(f,\theta)_{L_p(S^{d-1})}$ follows from to
above where
 $A_pf(x) = f(Qx) - f(x)$
for r^{-1} to show that the remainder of
 $\|S_{\theta}f - f\|_{L_p(S^{d-1})} \leq C(p)\omega_r(f,\theta)_{L_p(S^{d-1})}$
we note that
 $\int_{S_0(d)} f(Q^{-1}M_{\theta}Q_x)dQ = \int_{S_0(d)} f(Q^{-1}M_{-\theta}Q_x)dQ$

and use

$$\begin{aligned} \| \Delta_{\rho}^{r} f \|_{L_{p}(S^{d-1})} &= \| (TQ - I)^{r} \|_{L_{p}(S^{d-1})} \\ &= \left\| (T - I)^{s} \sum_{m=0}^{r-s} {r-s \choose m} (T - I)^{m} T^{r-s-m} \right\|_{L_{p}(S^{d-1})} \\ & \text{For } T_{\rho} f(x) = f(\rho x), \rho = Q^{-1} M_{\theta} Q \text{ and } \rho^{-1} = Q M_{-\theta} Q^{-1} \blacksquare \end{aligned}$$

Theorem 3.2
If
$$f \in L_p(S^{d-1})$$
, $p \leq 1$ and $\|f(\rho x)\|_{L_p(S^{d-1})} = \|f(x)\|_{L_p(S^{d-1})}$, for any $\rho \in So(d)$, $\|f(\rho x) - f(x)\|_{L_p(S^{d-1})} \to 0$ as $|\rho - 1| \to 0$
where $|\rho - \eta|^2 = \max_{x \in S^{d-1}} \left((\rho x - \eta x) \cdot (\rho x - \eta x) \right)$. (Not that
 $\max(\rho x - x) \geq \cos \Box$ is equivalent to $|\rho - 1| \leq 2 \frac{|\sin t|}{2}|_{0}$
then $\|C_n^{\delta}(f, x)\|_{L_p(S^{d-1})} \leq C(\rho)\|f\|_{L_p(S^{d-1})}$
Proof
In fact $C_n^{\delta}(f, x) = \int_0^{\pi} M_n^{\delta}(\theta)S_{\theta}(f, x)d\theta$ is known for $f \in L_p(S^{d-1})$
 $\|C_n^{\delta}(f, x)\|_{L_p(S^{d-1})} = \|\int_0^{\pi} M_n^{\delta}(\theta)S_{\theta}(f, x)d\theta\|_{L_p(S^{d-1})}$
 $\leq \int_0^{\pi} M_n^{\delta}(\theta)S_{\theta}(f, x)d\theta\|_{L_1(S^{d-1})}$
 $\leq \int_0^{\pi} M_n^{\delta}(\theta)S_{\theta}(f, x)\|_{L_1(S^{d-1})}d\theta$
 $= \|S_{\theta}(f, x)\|_{L_1(S^{d-1})}$
 $= (\int_{S^{d-1}} IS_{\theta}|^{1-p+p})^{1-\frac{1}{p}+\frac{1}{p}}$
 $= (\int_{S^{d-1}} IS_{\theta}|^p |S_{\theta}|^{1-p})^{\frac{1}{p}} (\int_{S^{d-1}} IS_{\theta}|^{1-p+p})^{1-\frac{1}{p}}$
 $\leq C(p) (\int_{S^{d-1}} IS_{\theta}|^p)^{\frac{1}{p}}$ using
 $S_{(\theta, p)}f = \frac{1}{m_{\theta}} ([If(y)]^p d_{Y}(y))^{\frac{1}{p}}$ we get
 $\|C_n^{\delta}(f, x)\|_{L_p(S^{d-1})} \leq C(p)\|f\|_{L_p(S^{d-1})} =$

Theorem 3.3 Let $f \in L_p(S^{d-1})$ for even d > 3, with $\|f(\rho x)\|_{L_p(S^{d-1})} = \|f\|_{L_p(S^{d-1})}$ for each $\rho \in So(d)$ and $\|f(\rho x) - f(x)\|_{L_p(S^{d-1})} \to 0$ as $\|\rho - I\| \to 0$ then $\|C_n^{\delta} - f\|_{L_p(S^{d-1})} \leq C(p, \theta)\omega_r(f, \mu)_{L_p(S^{d-1})} \cdot \omega_r([f, \mu)]_{\infty} \cdot \omega_r(f, \mu)_{\infty}^{\frac{-1}{p}}$ Proof

$$\begin{split} \|C_n^{\delta} - f\|_{L_p(S^{d-1})} &\leq \left\| \int_0^{\pi} \mu_n^{\delta}(\theta) \left\| [(S]_{\theta} f - f) d\theta \right| \right\|_{L_1(S^{d-1})} \\ &\leq \int_0^{\pi} \mu_n^{\delta}(\theta) \|S_{\theta}(f) - f\|_{L_1(S^{d-1})} d\theta \\ \text{Then using the fact that } \int_0^{\pi} M_n^{\delta}(\theta) d\theta = \mathbf{1} \text{ We get} \\ \|C_n^{\delta} - f\|_{L_p(S^{d-1})} &\leq \left(\int_{S^{d-1}} |S_{\theta}(f) - f|^{p-p+1} dx \right)^{\frac{1}{p} - \frac{1}{p} + 1} \\ &\leq \left(\int_{S^{d-1}} |S_{\theta}(f) - f|^{p} |S_{\theta}(f) - f|^{p} |S_{\theta}(f) - f|^{p+1} \right)^{\frac{1}{p}} \left(\left[\int_{S^{d-1}} |S_{\theta}(f) - f| d\theta \right] \right]^{1 - \frac{1}{p}} \\ \int_{S^{d-1}} |S_{\theta}(f) - f|^{p} \|S_{\theta}(f) - f\|_{\infty} \|S_{\theta}(f) - f\|_{\infty} \\ &\leq C(p, \theta) \|f - s_{\theta}(f)\|_{L_p(S^{d-1})} \omega_r(f, \mu)_{\infty} \omega_r(f, \mu)_{\infty}^{\frac{-1}{p}} \\ &\leq C(p, \theta) \omega_r(f, \mu)_p \omega_r(f, \mu)_{\infty} \omega_r(f, \mu)_{\infty}^{\frac{-1}{p}} \\ &= \text{Theorem3.4} \\ \text{If} \in L_p(S^{d-1}) \text{, then} \\ &= \mathbb{E}_n([ff)]]_{L_p(S^{d-1})} \leq c(p) K_{2\alpha}(f, \tilde{\Delta}, n^{-2\alpha})_{L_p(S^{d-1})}, \alpha > 0 \end{split}$$

$$E_{n}(f) \leq \|f - g\|_{L_{p}(S^{d-1})}$$

$$\leq c(p)\|f - g\|_{L_{p}(S^{d-1})} + t^{2\alpha} \left\| \left(-\widetilde{\Delta} \right)^{\alpha} g \right\|_{L_{p}(S^{d-1})} : \left(-\widetilde{\Delta} \right)^{\alpha} g \in L_{p}(S^{\Box-1})$$

$$\leq c(p)K_{2\alpha}(f, \widetilde{\Delta}, \mathbf{n}^{-2\alpha})_{L_{p}(S^{\Box-1})} \quad \blacksquare$$

Theorem 3.5
If
$$f \in L_p(S^{d-1})$$
 with even $d > 3$ with
 $\|f(\rho)\|_{L_p(S^{d-1})} = \|f(x)\|_{L_p(S^{d-1})}$ for any $\rho \in So(d)$
 $\|f(\rho) - f(x)\|_{L_p(S^{d-1})} \to 0 \text{ as}|\rho - I| \to 0 \text{ for } \theta \leq \frac{\pi}{2\ell}$
 $\left\|f + \frac{2}{\binom{2\ell}{\ell}} \sum_{j=i}^{\ell} (-1)^j \binom{2\ell}{\ell} S_{j,\theta} f\right\|_{L_p(S^{d-1})} \cong K_{2\ell}(f, \widetilde{\Delta}, \theta^{2\ell})_{L_p(S^{d-1})}$
Then

Proof

by definition of the K—functional with

$$\left\| f + \frac{2}{\binom{2\ell}{\ell} \sum (-1)^j \binom{2\ell}{\ell} S_{j,\theta} f} \right\|_{L_p(S^{d-1})}$$

$$\left\| f - S_j \theta \right\|_{L_p(S^{d-1})} + t \left\| - \tilde{\Delta} S_{\theta} f \right\|_{L_p(S^{d-1})}$$
We realize the operator $n - \theta(f)$ using the function $n(x)$ satisfying $n(x) \in C^{\infty}(R)$.

We realize the operator $\eta_{\alpha\theta}(f)$ using the function $\eta(x)$ satisfying $\eta(x) \in C^{\infty}(R_+)$,

for
$$0 \le x \le 1$$
, and $\eta(x) = 0$ for $x \ge 2$ the operator $\eta_{\alpha\theta}(f)$ is given by
 $\eta_{\alpha\theta}(f) = \sum_{k=0}^{\infty} \eta(\alpha \ \theta k) P_k(f)$, where $f \sim \sum_{k=0}^{\infty} P_k(f)$

for

and the definition of the K- functional $K_{\ell}(f, \Delta, t^{2\ell})_{L_{p}(S^{d-1})}$ we just have to show for all $f \in L_p(\mathbb{R}^d)$ and some fixed $\propto > 0$

$$K_{\ell}\left(f,\Delta,t^{2\ell}\right)_{L_{p}\left(S^{d-1}\right)} \approx K_{\ell}\left(f,\Delta,\alpha^{-2\ell}t^{2\ell}\right)_{L_{p}\left(S^{d-1}\right)}$$

displaythat

(i)
(i)

$$\left\| f - S_{j,\theta} f \right\|_{L_p(S^{d-1})} \geq C_1 \left\| f - \eta_{\mathbf{x}} \right\|_{L_p(S^{d-1})}$$
(ii)

$$\left\| f - S_{j,\theta} f \right\|_{L_p(S^{d-1})} \geq C_2 t^{2\ell} \left\| \Delta^{\ell} \eta_{\mathbf{x}} \right\|_{L_p(S^{d-1})}$$

Toprove i- it sufficient to show $f - S_{j,\theta} f \|_{L_p(S^{d-1})}$ $\leq C_{4} \left\| f - S_{j,\theta} f \right\|_{L_{p}(S^{d-1})}$ (1)

since, $as\eta_{1_{t}}andS_{j,\theta}$ are bounded multiplier operators on $L_{p}(\mathbb{R}^{d})$, we have

$$\left\| \left(I - \eta_{\mathbf{x}} \mathbf{u}_{f} \right) \left(I + S_{j,\theta} + S_{j,\theta}^{\mathbf{2}} + S_{j,\theta}^{\mathbf{3}} + S_{j,\theta}^{\mathbf{4}} \right) \left(f - S_{j,\theta} f \right) \right\|_{L_{p}(S^{d-1})} \leq C_{\mathbf{5}} \left\| f - S_{j,\theta} f \right\|_{L_{p}(S^{d-1})}$$

where *I* is the identity operator. To prove(1) we have to show that

$$\phi(u) = \frac{(1 - \eta(^{u}/_{\alpha}))m_{\ell}(u)^{5}}{1 - m_{\ell}(u)}$$

$$L_{p}(R^{d})or \|D^{\vee}\phi(u)\|_{L_{p}(S^{d-1})} \leq \frac{C}{[(1 + |u)|]^{d+\alpha}}, \propto > 0$$
is abounded multiplier on

is abounded multiplier on

given

(At least for $|v| \le d + 1$, but here that restriction does not metter) while the above is well known and used manytimes. We show it to below to help the reader. For $\Phi^{\mathbf{v}}(\mathbf{x})$

by
$$\Phi^{\mathbf{v}}(\mathbf{x}) = \int_{\mathbf{R}^d} \Box \Phi(\mathbf{y}) e^{2\pi \Box \mathbf{x} \mathbf{y}} dy$$

Which may be considered as aFourier transform, and prove the lemma2.8

which implies the sufficiency of showing that $\frac{\|D^{\vee}\phi(u)\|_{L_p(S^{d-1})} \leq \frac{C}{(1+|u|)^{d+2}}}{\text{for}}$ $\infty > 0$ and $|v| \le d + 1$. We observation that for $|u| \le 1$, $\phi(u) = 0$. for $|u| \ge 1$, then using Lemma2.7, we recall that the multipliers, and we get that 2

$$\|D^{\mathsf{v}}\phi(u)\|_{L_p(S^{d-1})} \leq C(v) \left(\frac{1}{1+|u|}\right)^{5\binom{d-1}{2}} = C(v) \left(\frac{1}{1+|u|}\right)^{d+\frac{3}{2}d-\frac{1}{2}}$$

and for The proof of (ii) is step by step of the relation (3.9) of Ditzian,2004

Theorem 3.6 For $f \in L_p(S^{d-1})$ for $d = 2n, n = 2, 3, 4, \dots$ with

$$\begin{split} \|f(\varphi x)\|_{L_{p}\left(S^{d-1}\right)} &= \|f(x)\|_{L_{p}\left(S^{d-1}\right) \text{ for any } \rho \in So(d)} \\ \|f(\varphi x) - f(x)\|_{L_{p}\left(S^{d-1}\right)} \to \mathbf{0}_{as} |\rho - l| \to \mathbf{0}_{,} \\ \text{where} \|\rho - \eta\|^{2} &= \max_{x \in S^{d-1}} \left((\rho x - \eta x) \cdot (\rho x - \eta x) \right)_{(\text{Note that } \max(\rho x. x))} \geq \cos \Box_{is} \\ \text{equivalent to } \|\rho - l\| \leq 2 \left| sin \frac{t}{2} \right|_{) \text{ then}} \\ E_{n}(f)_{L_{p}\left(S^{d-1}\right)} \leq c(p)\omega^{2}\left(f, \frac{1}{n}\right)_{L_{p}\left(S^{d-1}\right)} \\ \text{Proof} \\ \\ We \qquad \text{have} \qquad E(n)_{L_{p}\left(S^{d-1}\right)} \leq C(p)K_{2\pi}(f, \widetilde{\Delta}, n^{-2\pi})_{L_{p}\left(S^{d-1}\right)} \\ \text{ by} \\ \left\|f + \frac{2}{\binom{2\pi}{t}} \sum_{j=1}^{t} (-1)^{j} \binom{2\theta}{\ell_{j}} S_{j\theta} f \right\|_{L_{p}\left(S^{d-1}\right)} \approx K_{2\ell}(f, \widetilde{\Delta}, \theta^{2\ell})_{L_{p}\left(S^{d-1}\right)} \\ \text{ We have} \\ E_{n}(f)_{L_{p}\left(S^{d-1}\right)} \leq C(p)K_{2\infty}(f, \widetilde{\Delta}, n^{-2\pi})_{L_{p}\left(S^{d-1}\right)} \leq C(p) \left\|f + \frac{2}{\binom{2\ell}{t}\sum(-1)^{j} \binom{2\ell}{t-j}S_{j\theta}f}\right\|_{L_{p}\left(S^{d-1}\right)} \\ \text{ And by} \left\|S_{\theta}f - f\right\|_{L_{p}\left(S^{d-1}\right)} \leq C(p)\omega^{2}(f, \theta) \\ \text{we get} \\ E_{n}(f)_{L_{p}\left(S^{d-1}\right)} \leq C(p)\omega^{2}(f, \theta)_{L_{p}\left(S^{d-1}\right)} = \end{array}$$

References

•

- Ditzain, Z., 1999, Amodulus of smoothness on the unit sphere, j.d', Analyse Math, 79, 189-200
- Daiand, F., Ditzian, Z., 2004, Combinations of multivariate averages, j. Approx. Theorey, 131, 268-283.
- Daiand, F., Ditzian, Z., Jacksoninequali for banach spaces on the sphere, Amath.hungar. 118(1-2) (2008),171-195
- Stein, E.M., Weiss, G., IntroductiontoFourier analysis .in Euclidean spaces, Princeton university press, princeton, nj, 1971