Semi-Weakly Continuity of Maps in Bitopological Spaces

Ali Younis Shakir Department Of Electric, Institute Of Babylon, Ali younis595@yahoo.com

Abstract

The author study in this paper, properties of semi-weakly continuous of maps in bio topological spaces.

Keywords: Semi-Weakly Continuous maps ,bitopological space.

الخلاصة في هذا البحث تم دراسة خواص الدوال شبه ضعيفة الاستمرارية في الفضاءات ثنائية التبولوجي .

الكلمات المفتاحية: الدوال شبه ضعيفة الاستمرارية , فضاء ثنائي التبولوجي .

1-Introduction

let X be at topological space and A be a subset of X. A subset A is said to be semi open (s-open) (Levine , 1963) if $A \subset A^{-0}$. The complement of a s-open set is called semi closed (s-closed). The union of all s-open sets of X contained in A is called the semi interior of A denoted by A^{s} . The intersection of all s-closed sets sets of X containing A is called the s-clouser of A and denoted by A^{-s} . The family of all sopen sets in a space X is denoted by S.O (X). Let Y be any space and T_1 , T_2 are topological spaces on. The space (Y, T_1, T_2) is called bio topological space (Kelly , 1963). For a set $A \subset Y$ the T_i -closare denoted by $A^{-(i)}$ and the T_i interior denoted by $A^{\circ (i)}$ of A for i = 1, 2.

2- Semi-weakly continuous

We study the semi-weakly continuous in bio topological space, the following results were reached by forcing the definition of semi open in semi weakly continuous.

Definition 2-1.

Let X be a topological space. A map f: $X \to Y$ is said to be T_1 -semi weakly continuous with respect to T_2 at a point $x_0 \in X$ if for every T_1 -open set V of Y containing $f(x_0)$ there exists s-open set U in X containing x_0 such that $f(U) \subset V^{-s(2)}$ where $V^{-s(2)}$ the T_2 -closure.

Theorem 2 - 2

A mapping f: $X \rightarrow Y$ is T₁-semi weakly continuous with respect to T₂ iff for every T₁-open set V in Y,

 $f^{-1}(V) \subset [f^{-1}(V^{-s(2)})]^{os}$

Proof

Let $x \in X$ and V an T₁-open set containing f(x), then: $x \in f^{-1}(V) \subset [f^{-1}(V^{-s(2)})]^{os}$. Put $U = [f^{-1}(V^{-s(2)})]^{os}$. Conversely, let V be any T₁-open set of Y and $x \in f^{-1}(V)$.

Then there exists a s-open U in X such that $x \in U$ and $f(U) \subset (V^{-s(2)})$ and

hence $x \in [f^{-1}(V^{-s(2)})]^{\text{os}}$. This proves that $f^{-1}(V) \subset [f^{-1}(V^{-s(2)})]^{\text{os}}$.

Definition 2-3.

Let (X,P) be a topological space and let (Y, T_1 , T_2) be bio topological space. Let f: X \rightarrow Y be a function. A function g: (X, P) \rightarrow

 $(X \times Y, P \times T_2)$ defined by g(x) = (x, f(x)) for every $x \in X$, is called the graph function of f, where $P \times T_2$ is the product topology on $X \times Y$.

The following result gives elementary relation between a function and its graph function.

Theorem 2 - 4

Let f: $X \to Y$ be a mapping and g: $X \to X \times Y$ be the graph mapping of f, give by g(x)=(x, f(x)) for every point $x \in X$.

If g is T_1 -semi weakly continuous with respect to T_2 , then f is T_1 -semi weakly continuous with respect to T_2 .

Proof

Let $x \in X$ and V be any T₁-open set containing f(x). Then X×V is an (P×T₂)open set in X×Y containing g(x). Since g is T₁-semi weakly continuos with respect to T₂, there exists s-open set U containing x such that $g(U) \subset (X \times V)^{-s}$. It follows from Lemma4 (Noir , 1978) , that $(X \times V)^{-s} \subset X \times V^{-s(2)}$. Since g is the graph mapping of f, we have $f(U) \subset V^{-s(2)}$. This shows that f is T₁-semi weakly continuous with respect to T₂.

Definition 2 – 5.

A topological space (Y, T₁, T₂) is called pairwise Hausdroff (Kelly, 1963), if for all points x, $y \in x \neq y$, there exist disjoint sets $U \in T_i$, $V \in T_j$, $i \neq j = 1,2$ such that $x \in U$ and $y \in V$.

We have the following result.

Theorem 2 – 6.

Let (X,P) be a topological space and (Y, T₁, T₂) be a pairwise Hausdroff bio topological space. If $f:X \rightarrow Y$ is T₁-semi weakly continuous with respect to T₂, then the graph G(f) of the map f is s-closed in the space (X×Y, P×T₂). Proof

Let f be T₁-semi weakly continuous with respect to T₂. Let $(x,y) \notin G(f)$, then $y \neq f(x)$ and there exist disjoint sets $U \in T_2$, $V \in T_2$ such that $f(x) \in U$ and $y \in V$. By Vu we denote the union of all sets $V \in T_2$ for which above holds with the set U. Moreover from theorem1 it follows

 $x \in [f^{-1}(U^{-s(2)}]^{os}$. Thus $X \times Y / G(f) = \bigcup \{[f^{-1}(U^{-s(2)}]^{os} \times Vu : u \in T_1\}$, since $[f^{-1}(U^{-s(2)}]^{os} \times Vu$ is s-open set in $(X \times Y, P \times T_2)$ and the union of s-open sets is s-open it implies that G(f) is a s-closed set in the space $(X \times Y, P \times T_2)$. **Theorem 2 – 7.**

Let (X,P) be a topological space and (Y, T_1, T_2) be a bitopological space. If $f:X \rightarrow Y$ is T_1 -semi weakly continuous with respect to T_2 , and A is an T_1 -open subset of Y containing f(x). Then $f:X \rightarrow A$ is T_1 -semi weakly continuous with respect to T_2 .

Proof

Let $x \in X$ and let V be an T₁-open subset A containing f(x). Since A is T₁-open in Y, then V is T₁-open in Y, therefore, there exist s-open set U in X containing x such that $f(U) \subset V^{-s(2)}]^{os}$. Then f:X \rightarrow A is T₁-semi weakly continuous with respect to T₂.

Theorem 2 – 8.

Let (X,P) be a topological space and (Y, T_1 , T_2) be a bio topological space. If $f: X \rightarrow Y$ is T_1 -semi weakly continuous with respect to T_2 , and A is open in X, then the restriction $f \setminus A: A \rightarrow Y$ is T_1 -open -semi weakly continuous with respect to T_2 . **Proof**

Let $x \in A$ and V be T_1 -open set of Y containing f(x). Since f is T_1 -semi weakly continuous with respect to T2, there exist s-open set U in X containing x such that $f(U) \subset V^{-s(2)}$. Since A is open in X, by lemma1 of [3] $x \in A \cap U \in S.O(A)$ and f $|A(A \cap U) = f(A \cap U) \subset f(U) \subset V^{-s(2)}$. It follows that f|A is T_1 -semi weakly continuous with respect to T_2 .

Theorem 2 – 9.

Let f be a map of a topological space X into a bio topological space (Y,T_1,T_2) . If for every non-empty closed set $M \subset X$ the restriction

 $f \mid M : M \rightarrow Y$ is T₁-semi weakly continuous with respect to T₂, then f is

T₁-semi weakly continuous with respect to T₂.

Proof

Let us a ssume that f is not T₁-semi weakly continuous with respect to T₂ at a point $x_o \in X$. There exist a T₁-open set V of Y containing $f(x_o)$ such that $f(U) \not\subset V^{-s(2)}$ for each $U \in S.O(X)$ containing x_o . Let $M=(X / f^{-1} (V^{-s(2)}))$. Evidently $x_o \in M$. If W is sopen containing x_o in M,then for every non-empty s-open in M set $W_1 \subset W$ we have $f(W_1) \subset V^{-s(2)}$. It implies $f \mid M$ is not T₁-semi weakly continuous with respect to T₂ at a point x_o .

References

Kelly J.C "Bio topological spaces", Proc. London Math. Soc. 13(1963), P. 71-89.

Levine N. "Semi-open sets and semi continuity in topological space" Amer. Math. Mouthly 70(1963). P.36-41.

Noir T. "(On semi-continuous mapping", Atti Accad. No2. Lincei Rand. C1. Sci. Fis. Mat. Natur. (8)54(1973). P.210-214.

Noir T. "A note on s-regular space", Glasnik Mat. 13(33) (1978) p.107-110.