Realisation and Characterisation the BEC for 87Rb Atoms

Main Article Content

Nihal A. AbdulWahhab
Ferruccio Renzoni

Abstract

The Bose-Einstein condensate (BEC) is created in a magnetic trap in the Quadrupole-Ioffe configuration (QUIC). This kind of trap combines an anti-Helmholtz quadrupole field with an offset field produced by a single coil perpendicular to the quadrupole field axis to suppress Majorana transitions. In the quadrupole trap evaporative cooling is performed by using radio frequency, reaching the phase transition to a BEC in the QUIC trap. By using Time of Flight (TOF) technique, the expansion velocity is measured with  and  which lead to temperature of  and  It is roughly around the recoil temperature.


 

Article Details

How to Cite
[1]
“Realisation and Characterisation the BEC for 87Rb Atoms”, JUBPAS, vol. 27, no. 1, pp. 457–467, Apr. 2019, doi: 10.29196/jubpas.v27i1.2219.
Section
Articles

How to Cite

[1]
“Realisation and Characterisation the BEC for 87Rb Atoms”, JUBPAS, vol. 27, no. 1, pp. 457–467, Apr. 2019, doi: 10.29196/jubpas.v27i1.2219.

References

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science (80-. )., vol. 269, no. 5221, pp. 198–201, 1995.

C. C. Bradley, C. A. Sackett, and R. G. Hulet, “Bose-Einstein condensation of lithium: Observation of limited condensate number,” Phys. Rev. Lett., vol. 78, no. 6, p. 985, 1997.

C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, “Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions,” Phys. Rev. Lett., vol. 75, no. 9, p. 1687, 1995.

C. J. Foot, Atomic physics, vol. 7. Oxford University Press, 2005.

C. J. Pethick and H. Smith, Bose–Einstein condensation in dilute gases. Cambridge university press, 2008.

W. Ketterle, “Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser,” Rev. Mod. Phys., vol. 74, no. 4, p. 1131, 2002.

W. D. Phillips, P. L. Gould, and P. D. Lett, “Cooling, stopping, and trapping atoms,” Science (80-. )., vol. 239, no. 4842, pp. 877–883, 1988.

N. A. Abdulwahhab, “Transport of cold atoms in laser fields.” UCL (University College London), 2015.

K. B. Davis, M.-O. Mewes, M. A. Joffe, M. R. Andrews, and W. Ketterle, “Evaporative cooling of sodium atoms,” Phys. Rev. Lett., vol. 74, no. 26, p. 5202, 1995.

B. Lu and W. A. van Wijngaarden, “Bose Einstein condensation in a QUIC trap,” Can. J. Phys., vol. 82, no. 2, pp. 81–102, 2004.

W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, “Behavior of atoms in a compressed magneto-optical trap,” JOSA B, vol. 11, no. 8, pp. 1332–1335, 1994.

D. A. Steck, “Rubidium 87 D line data.” 2001.

A. G. Martin, K. Helmerson, V. S. Bagnato, G. P. Lafyatis, and D. E. Pritchard, “RF spectroscopy of trapped neutral atoms,” Phys. Rev. Lett., vol. 61, no. 21, p. 2431, 1988.

T. M. Brzozowski, M. Maczynska, M. Zawada, J. Zachorowski, and W. Gawlik, “Time-of-flight measurement of the temperature of cold atoms for short trap-probe beam distances,” J. Opt. B Quantum Semiclassical Opt., vol. 4, no. 1, p. 62, 2002.

Similar Articles

You may also start an advanced similarity search for this article.