Improve Bounds of some Arithmetical Functions
Main Article Content
Abstract
We show in this article the use of the norm function to get a new lower bound of Riemann-Zeta function where. This subject has been studied deeply by Hilberdink [HIL, 12]). Getting a bound for the Riemann-Zeta function in the critical strip is more challenging for many reasons related to the behavior of the Riemann-Zeta function in that strip. In the other words, the aim of this article is to prove that has a strict lower bound when the real part is very closed to the line 1. We state this in the main theorem of this paper.
Article Details
Issue
Section
Articles
How to Cite
[1]
“Improve Bounds of some Arithmetical Functions”, JUBPAS, vol. 26, no. 2, pp. 326–331, Apr. 2019, Accessed: May 20, 2025. [Online]. Available: https://www.journalofbabylon.com/index.php/JUBPAS/article/view/2229